[スポンサーリンク]

化学者のつぶやき

シクロプロパンの数珠つなぎ

[スポンサーリンク]

ivyane_1.gif

(構造図は論文[3]より)

今回はアイヴィーアン(Ivyane)と呼ばれる化合物を紹介しましょう。

これは炭素のトライアングル(シクロプロパン)が多数1,1-連結している、見た目が大変にユニークな炭化水素です。

ごく最近2つのグループから合成法が報告され、各種物性を調べることが可能になりました。


ゲッティンゲン大学ののArmin de Meijereらのアプローチ[1]は、Matterson反応を用いるものです。すなわち、以下のような有機ホウ素試薬を、リチオ化したブロモシクロプロパンと反応させて対応する多連結体を得るというものです。

ivyane_3.gifただ完全な選択的合成が不可能たる点、最終的に取れるアルコールの除去が難しい点がネックです。

ごく最近になって、オーストラリア国立大学のSherburnらが、無置換[n]アイヴィーアン(n=3~8)の合成を報告しました[2]。彼らのアプローチは、[n]デンドラレン(1,1-連結型オリゴエキソエチレン)をSimmons-Smithシクロプロパン化に伏すというもの。

ivyane_2.gifこの手法では、高収率・単工程・グラムスケールにてアイヴィーアンが得られます。これまで知られている無置換アイヴィーアンは最高でも3連結という話ですから、大幅に記録を伸ばした事になります。
彼らはデンドラレン自体の効率的合成法[3]も確立しており、なかなか面白い反応性を示すことを示してもいます。(有機化学美術館さんの記事がまとまっていますので、そちらをご参照いただければ幸いです。)

アイヴィーアンは歪みをかなりもつ化合物たる一方で、その熱安定性は意外にも高いようです。[6]アイヴィーアンは200℃まで加熱しても壊れないそうです。しかし蓄えているエネルギーそのものは大きく、[6]アイヴィーアンは単位質量当たりで、炭化水素中最高の燃焼熱を放出するとのこと。その値は単純にシクロプロパンの6倍と見積もれるそうで、主にシクロプロパンの歪エネルギー由来であることが示唆されています。こういった基礎的治験は、爆薬・燃料などの開発に向けて重要となってきます。

またアイヴィーアン類は、溶液・固体状態にて、らせん状の配座構造をとることも彼ら両名によって示されています(冒頭図)。

「Ivyane」とはSherburnによる命名ですが、らせん構造がツタ(英名Ivy)の巻きつく様子を彷彿とさせることから名付けられたようですね。

変わった構造の化合物とユニークな名称はいろいろありますが、その由来を紐解いてみるのもまた楽し、ではないでしょうか。

  • 関連書籍

 

  • 関連文献
[1] Kurahashi, T.; Kozhushkov, S. I.; Schill, H.; Meindl, K.; Ruhl, S.;  de Meijere, A. Angew. Chem., Int. Ed. 2007, 46, 6545. DOI: 10.1002/anie.200702013

[2] Bojase, G.; Nguyen, T. V.;  Payne, A. D.; Willis, A. C.; Sherburn, M. S. Chem. Sci. 2010 Advance Article. DOI: 10.1039/c0sc00500b

[3] (a) Payne, A. D.; Willis, A. C.;  Sherburn, M. S.  J. Am. Chem. Soc. 2005, 127, 12188. DOI: 10.1021/ja053772+ (b) Payne, A. D.; Bojase, G.; Paddon-Row, M. N.; Sherburn, M. S. Angew. Chem. Int. Ed. 2009, 48, 4836. DOI: 10.1002/anie.200901733.

  • 関連リンク

デンドラレンの化学 (有機化学美術館)

Dendralene  – Wikipedia

Sherburn Group

Homepage of Prof. Armin de Meijere

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 室温固相反応で青色発光物質Cs₃Cu₂I₅の良質薄膜が生成とその…
  2. 2007年度ノーベル医学・生理学賞決定!
  3. Dead Endを回避せよ!「全合成・極限からの一手」⑧
  4. pH応答性硫化水素ドナー分子の開発
  5. 高機能・高性能シリコーン材料創製の鍵となるシロキサン結合のワンポ…
  6. 階段状分子の作り方
  7. 位置選択的C-H酸化による1,3-ジオールの合成
  8. オスミウム活性炭素 –ニトロ基選択的還元触媒–

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. マテリアルズ・インフォマティクスの推進成功事例セミナー
  2. TEtraQuinoline (TEQ)
  3. 僕がケムステスタッフになった三つの理由
  4. 有機フッ素化合物の新しいビルドアップ構築法 ~硫黄官能基が導く逐次的分子変換~
  5. 新世代鎮痛剤の販売継続を 米政府諮問委が勧告
  6. 化学企業のグローバル・トップ50が発表
  7. 有機反応を俯瞰する ー芳香族求電子置換反応 その 2
  8. 触媒量の金属錯体でリビング開環メタセシス重合を操る
  9. English for Writing Research Papers
  10. ポンコツ博士の海外奮闘録⑫ 〜博士,今と昔を考える〜

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2010年12月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

ニキビ治療薬の成分が発がん性物質に変化?検査会社が注意喚起

2024年3月7日、ブルームバーグ・ニュース及び Yahoo! ニュースに以下の…

ガラスのように透明で曲げられるエアロゲル ―高性能透明断熱材として期待―

第603回のスポットライトリサーチは、ティエムファクトリ株式会社の上岡 良太(うえおか りょうた)さ…

有機合成化学協会誌2024年3月号:遠隔位電子チューニング・含窒素芳香族化合物・ジベンゾクリセン・ロタキサン・近赤外光材料

有機合成化学協会が発行する有機合成化学協会誌、2024年3月号がオンライン公開されています。…

日本化学会 第104春季年会 付設展示会ケムステキャンペーン Part3

日本化学会年会の付設展示会に出展する企業とのコラボです。第一弾・第二弾につづいて…

ペロブスカイト太陽電池の学理と技術: カーボンニュートラルを担う国産グリーンテクノロジー (CSJカレントレビュー: 48)

(さらに…)…

日本化学会 第104春季年会 付設展示会ケムステキャンペーン Part2

前回の第一弾に続いて第二弾。日本化学会年会の付設展示会に出展する企業との…

CIPイノベーション共創プログラム「世界に躍進する創薬・バイオベンチャーの新たな戦略」

日本化学会第104春季年会(2024)で開催されるシンポジウムの一つに、CIPセッション「世界に躍進…

日本化学会 第104春季年会 付設展示会ケムステキャンペーン Part1

今年も始まりました日本化学会春季年会。対面で復活して2年めですね。今年は…

マテリアルズ・インフォマティクスの推進成功事例 -なぜあの企業は最短でMI推進を成功させたのか?-

開催日:2024/03/21 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

分子のねじれの強さを調節して分子運動を制御する

第602回のスポットライトリサーチは、東京大学大学院理学系研究科 塩谷研究室の中島 朋紀(なかじま …

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP