[スポンサーリンク]

化学者のつぶやき

複雑分子を生み出す脱水素型ディールス・アルダー反応

[スポンサーリンク]

 

Molecular Complexity via C-H Activation: A Dehydrogenative Diels-Alder Reaction
Stang, E. M.; White, M. C. J. Am. Chem. Soc. 2011, ASAP. doi:10.1021/ja2059704

 

Diels-Alder反応は化合物の複雑度を迅速に増すことができる、有機合成における最重要反応の一つです。過去に無数の改良が報告されており、複雑化合物でも安心して使えるため、一見して万能そのものです。しかし実は1つだけ、現代まで解決しきれていない問題があります。それはジエンの調製法が限られている点です。ジエン自体が簡単なものであれば良いのですが、複雑なジエンとなるとその合成はとたんに難しくなります。ジエンの安定性そのものに難があるためです。

このような理由があるため、複雑な化合物同士でDiels-Alder反応を行うときは、直前までジエンを露出させない合成ルート設定を余儀なくされてしまいます。反応直前に共役系を伸長させたり、等価体をunmaskするといったアプローチがよく採られますが、先進的なアプローチとは言い難いものです。もともとがアトムエコノミーに優れた反応ですから、保護基などを使わずに、反応の先天的利点を殺さない解決法こそが望まれます。

この観点で大変スマートなアプローチが、イリノイ大学・Whiteらのグループから報告されました。彼女らは独自開発したC-H活性化触媒を用い、選択的脱水素化によってジエンを露出させるという新しい方法論を提示しています。

彼女らが開発したパラジウム触媒はアリル位選択的にC-H活性化を行い、求核剤とカップリングさせることができます。ならば条件を調節することで、β-ヒドリド脱離を経て1,3-ジエンを与えるのでは?という発想が端緒になっています。

white_DA_2.gif

 

最適条件においては求ジエン体を最初から共存させ、活性ジエンを低濃度に保つことが、重合などの副反応を抑えるために重要だったようです。適用の一部を以下に示しますが、条件自体も温和で、官能基選択性は総じて高いです。複雑化合物への適用可能性をきっちり示しているのも彼女らの論文の特徴です。短工程での4環性化合物合成への応用なども示されています。

white_DA_1.gif

 

このようにC-H活性化を適切に使うことで、ありふれた化合物を前駆体として活用することが可能になります。言い換えれば「C-H活性化をよくある局所的修飾法としてではなく、活性種の露出、さらには分子骨格の複雑化に使う」という視点でのコンセプト提示を行っているわけです。斬新な提案の一つといえるでしょう。

ところで論文中では、「末端オレフィンは1600種以上の市販品があるが、1,3-ジエンは120しか市販品が存在しない」という言及がなされています。これも自分の研究が極めて根源的であることを端的に示す、優れたアピール文だと思えます。「シンプルながら入手困難な物質を簡単に作りだす」という到達目標は、合成化学のアイデンティティとも呼ぶべき一つであり、また時代を通じて不変だからです。

「市販品の数」と「合成容易さ・安定性」の間にパラレルな関係がある事自体は、言われて見れば当たり前です。しかし論文で報告される反応の原料というのはたいていが複雑で、市販品でもありません。そもそもこういう類のアピール機会に恵まれないのがほとんどではないでしょうか。

つまりは、このような言及ができるという事実だけでも、コンセプトが極めてベーシックなものであり、かつ高い実用性へ結びつくポテンシャルを秘めている、と言えそうです。反応開発に望む研究者であれば、このような一文がさらりと書けるような研究を目指したいものですね。

 

関連書籍

 

関連リンク

White Research Group

 

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 2004年ノーベル化学賞『ユビキチン―プロテアソーム系の発見』
  2. 鉄触媒での鈴木-宮浦クロスカップリングが実現!
  3. 個性あるTOCその③
  4. 有機反応を俯瞰する ー付加脱離
  5. 有機反応を俯瞰する ー芳香族求電子置換反応 その 2
  6. 第三級アミン酸化の従来型選択性を打破~Auナノ粒子触媒上での協奏…
  7. 有機合成化学協会誌2018年8月号:触媒的不斉全合成・分子ロータ…
  8. 【速報】ノーベル化学賞2013は「分子動力学シミュレーション」に…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. スズアセタールを用いる選択的変換 Selective Transformation with Tin Acetal
  2. 【超難問】幻のインドールアルカロイドの全合成【パズル】
  3. ベンゼン環が速く・キレイに描けるルーズリーフ
  4. ネオジム磁石の調達、製造技術とビジネス戦略【終了】
  5. マクファディン・スティーヴンス反応 McFadyen-Stevens Reaction
  6. アーサー・L・ホーウィッチ Arthur L. Horwich
  7. 「関東化学」ってどんな会社?
  8. ルーシェ還元 Luche Reduction
  9. イスラエルの化学ってどうよ?
  10. 論文執筆&出版を学ぶポータルサイト

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2011年9月
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

最新記事

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

光と水で還元的環化反応をリノベーション

第609回のスポットライトリサーチは、北海道大学 大学院薬学研究院(精密合成化学研究室)の中村顕斗 …

ブーゲ-ランベルト-ベールの法則(Bouguer-Lambert-Beer’s law)

概要分子が溶けた溶液に光を通したとき,そこから出てくる光の強さは,入る前の強さと比べて小さくなる…

活性酸素種はどれでしょう? 〜三重項酸素と一重項酸素、そのほか〜

第109回薬剤師国家試験 (2024年実施) にて、以下のような問題が出題されま…

産総研がすごい!〜修士卒研究職の新育成制度を開始〜

2023年より全研究領域で修士卒研究職の採用を開始した産業技術総合研究所(以下 産総研)ですが、20…

有機合成化学協会誌2024年4月号:ミロガバリン・クロロププケアナニン・メロテルペノイド・サリチル酸誘導体・光励起ホウ素アート錯体

有機合成化学協会が発行する有機合成化学協会誌、2024年4月号がオンライン公開されています。…

日本薬学会第144年会 (横浜) に参加してきました

3月28日から31日にかけて開催された,日本薬学会第144年会 (横浜) に参加してきました.筆者自…

キシリトールのはなし

Tshozoです。 35年くらい前、ある食品メーカが「虫歯になりにくい糖分」を使ったお菓子を…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP