[スポンサーリンク]

化学者のつぶやき

小さなケイ素酸化物を得る方法

 

四塩化ケイ素(SiCl4)をLiAlH4等で還元すると、シラン(SiH4)が発生します。

シランは、空気中で自発的に酸素と反応し、SiO2を与えます。

ケイ素と炭素

SiO2は、二酸化炭素(CO2)のケイ素類縁体ですが、これらは全く異なる性質を示します。
細かい説明は省きますが、、
(i) ケイ素の3s-3p軌道はサイズの差が大きく、混成軌道を形成する際の両軌道の相互作用が、同程度の2s-2p軌道サイズを持つ炭素の系よりも効果的ではない
(ii) 3p軌道の空間的広がりが大きいことや軌道内に節があることに起因して、π結合が弱い
などの特徴のため、π結合を持つケイ素化合物の合成には、電気陽性な置換基もしくは嵩高い立体保護基を導入するなど、通常、なんらかの安定化を必要とします。[1]

ところが、SiO2はケイ素周りに酸素が二つしかないので、容易にオリゴマー化して様々な多量体を形成し、そこでは全てのSi-O結合が単結合となります。このSiO2、サンドマンの主成分のでもあります。[2]
二酸化炭素が単量体として安定に存在できるのに対し、ここまで性質が違うとは、驚きですね。

単純に、反応エネルギーを見積もってみると、
SiO2: Si=O bond x 2 = 153 kcal/mol x 2 = 306 kcal/mol
[SiO2]n: Si-O bond x 4 = 111 kcal/mol x 4 = 444 kcal/mol
と、多量化によって、単位ユニット当たりおよそ138 kcal/mol、安定化することがわかりますね。

他にも類似の[SiaOb]を基本ユニットとする物質は、主にシリカートという形で存在しています。例えば、タルク [Mg6[Si8O20](OH)4]やトレモライト [Ca2Mg5(Si8O22)(OH)2]などなど。

 

rk20150504fig0

 

 

一方で、SiOやSiO2の単量体は、星間分子としてまたは高温下で検出された報告例があるのみで、遷移金属を用いたとしてもマトリックス中で観測するのが精いっぱいでした。[3]

さて、ごく最近、ジョージア大学のRobinsonらによって、Si2O3とSi2O4ユニットの安定化に成功したったぜ、という論文が報告されていたので紹介したいと思います。

Wang, Y.; Chen, M.; Xie, Y.; Wei, P.; Schaefer III, H. F.; Schleyer, P. v. R.; Robinson, G. H. Nature Chemistry 2015, 7, online, DOI:10.1038/nchem.2234

著者らは以前合成した、カルベンで安定化されたSi21)を原料として用いています。[4] と酸化窒素(N2O)との反応から、Si2O3ユニットを持つ化合物 (2)を50%の収率で得ています。また、と酸素との反応からは、Si2O4ユニットを持つ化合物 (3)がおよそ39%の収率で得られています。

 

rk20150504fig1

それぞれ、Si2O三員環及びSi2O2四員環骨格を持つ特徴的な分子構造を、X線構造解析によって明らかにしています(下図*原著論文より)。

 

rk20150504fig1-2

 

 

結合長や理論計算による電化分布、軌道の解析などから、2および3の電子状態には、それぞれ2A2Bの共鳴構造の寄与が大きく効いていると結論づけています。
やはり、Si=O二重結合を持つ状態は好ましくないのでしょうか。2A2Bの中のSi-O結合は、形式上すべて単結合ですもんね。つまり、カルベンの配位によって2A2Bの状態を導くことができた結果、このようなSi2On (n = 3 or 4)ユニットの安定化に成功したということでしょう。

NHCをうまく利用した研究、一段落するのかと思いきや、まだまだ出てきますね。
それではもう一つ、関連論文を紹介。

 

Ahmad, S. U.; Szilvási, T.; Irran, E.; Inoue, S. J. Am. Chem. Soc. 2015, ASAP. DOI: 10.1021/jacs.5b01853

 

ドイツ、ベルリン工科大の井上らは、NHCを使うことで、アシリウムイオンのケイ素類縁体の合成に成功しています。
アシリウムイオンとは、[R-C≡O]+の電子状態を示すカチオン種であり、炭素と酸素原子間には三重結合性が見られます。

 

rk20150504fig2

 

 

上述したとおり、ケイ素-酸素多重結合の反応性が高いことに起因して、アシリウムイオンのケイ素類縁体(シラ-アシリウム)[R-Si≡O]+を単離したという例は、これまでに報告されていません。著者らは、二つのNHCでサポートされたシリリウミリデン (4)というカチオン種を、反応の前駆体として用いています。

 

rk20150504fig3

 

 

カチオン性のアシリウム種を合成するためにカチオン種を原料に用いる、スマートなアプローチですね。4と二酸化炭素(CO2)の反応から、直接、シラ-アシリウム (5)を合成しています。この反応では、一酸化炭素が複製していることから、金属を用いない二酸化炭素の還元、という視点からも興味深い反応だと思います。

 

rk20150504fig3-2

 

 

また、先のRobinsonらによって合成された2および3と同様に、化合物5においても、5Aのような共鳴構造の寄与が分子の安定化に効いているようです。

活性な化合物を単離するには、一番安定そうな共鳴構造を見つけ、そこに狙いを絞った合成戦略を立てる というのが一つの有効な手段だということでしょう。「共鳴構造式」という基礎的なコンセプトは、日本だと高校の授業であたりで既に学ぶことと思います。最先端の研究においても、いかに基礎が重要であるか、ということを再認識させらるような内容だと感じます。

 

参考文献

  1.  Raabe, G.; Michl, J. Chem. Rev. 1985, 85, 419-509. DOI:10.1021/cr00069a005
  2.  砂から有機ケイ素の原料を!
  3.  (a) Jutzi, P. & Schubert, U. Silicon Chemistry: From the Atom to Extended Systems (Wiley-VCH, 2003); (b) Mehner, T.; Koppe, R.; Schnockel, H. Angew. Chem. Int. Ed. 1992, 31, 638-640. DOI: 10.1002/anie.199206381 ; (c) Mehner, T.; Schnockel, H.; Almond, M. J.; Downs, A. J. J. Chem. Soc. Chem. Commun. 1988, 117-119. DOI: 10.1039/C39880000117 ; (d) Chenier, J. H. B.; Howard, J. A.; Joly, H. A.; Mile, B.; Timms, P. L. Chem. Commun. 1990, 581-582. DOI: 10.1039/C39900000581; (e) Schnockel, H; Angew. Chem. Int. Ed. 1978, 17, 616-617. DOI: 10.1002/anie.197806161
  4.  Wang, Y.; Xie, Y.; Wei, P.; King, R. B.; Schaefer III, H. F.; Schleyer, P. v. R.; Robinson, G. H. Science 2008, 321, 1069. DOI:10.1126/science.1160768

 

関連書籍

 

関連リンク

  1.  C&E NEWS
  2. S. Inoue

(i)

(ii) Merkel setzt auf Zusammenarbeit mit Japan

(iii) Inoue-lab

関連記事

  1. これで日本も産油国!?
  2. ヘテロベンザイン
  3. 銅触媒と可視光が促進させる不斉四置換炭素構築型C-Nカップリング…
  4. SciFinder Future Leaders 2017: プ…
  5. Reaxys Prize 2011募集中!
  6. 対決!フタロシアニンvsポルフィリン
  7. 金属錯体化学を使って神経伝達物質受容体を選択的に活性化する
  8. 超分子化学と機能性材料に関する国際シンポジウム2016

コメント

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

注目情報

ピックアップ記事

  1. Post-Itのはなし ~吸盤ではない 2~
  2. Ugi反応を利用できるアルデヒドアルデヒド・イソニトリル・カルボン酸・アミン
  3. 比色法の化学(後編)
  4. ビス(ピリジン)ヨードニウムテトラフルオロボラート:Bis(pyridine)iodonium Tetrafluoroborate
  5. フェントン反応 Fenton Reaction
  6. 最近の有機化学注目論文1
  7. デスソース
  8. メディビック、抗がん剤「グルフォスファミド」の第II相試験を開始
  9. 巨大ポリエーテル天然物「ギムノシン-A」の全合成
  10. ブーボー/ボドロー・チチバビン アルデヒド合成 Bouveault/Bodroux-Chichibabin Aldehyde Synthesis

注目記事

関連商品

注目情報

試薬検索:東京化成工業



最新記事

分子振動と協奏する超高速励起子分裂現象の解明

第98回のスポットライトリサーチは、コロンビア大学の宮田潔志さん(日本学術振興会海外特別研究員)にお…

二次元物質の科学 :グラフェンなどの分子シートが生み出す新世界

内容2004年にブレークしたグラフェンは,電子材料はじめさまざまな応用が期待される新素材の担…

高機能な導電性ポリマーの精密合成法の開発

そろそろ100回目が近づいてきました。第97回のスポットライトリサーチ。今回は首都大学東京 理工学研…

ストックホルム国際青年科学セミナー参加学生を募集開始 ノーベル賞のイベントに参加できます!

一週間スウェーデンに滞在し、ノーベル賞受賞者と直接交流するなどの貴重な機会が与えられるセミナーSto…

「電子の動きを観る」ーマックスプランク研究所・ミュンヘン大学・Krausz研より

「ケムステ海外研究記」の第13回目は、第6回目の志村さんのご紹介で、マックス・プランク量子光学研究所…

岩澤 伸治 Nobuharu Iwasawa

岩澤 伸治 (いわさわ のぶはる、19xx年x月x日-)は、日本の有機化学者である。東京工業大学 教…

Chem-Station Twitter

PAGE TOP