[スポンサーリンク]

化学者のつぶやき

アルデヒドからアルキンをつくる新手法

炭素ー炭素三重結合をもつ炭化水素であるアルキンは、言うまでもなく有機合成化学において有用な二炭素ユニットです。そのため簡便にアルキンを構築する手法が古くから開発されてきました。様々な手法が報告されていますが、アルデヒドやケトンからアルキンを合成する手法としては人名反応にもなっている、

  1. コーリー・フックス アルキン合成 Corey-Fuchs Alkyne Synthesis
  2. セイファース・ギルバート アルキン合成 Seyferth-Gilbert Alkyne Synthesis (大平ーベストマン Ohira–Bestmann 変法)

が現在最も用いられています(図 1a, b)。

これらはアルキンを合成する信頼性の高い反応である反面、(a)多段階反応である点や、(b)化学量論量のジアゾホスホナート試薬を用いる必要があり、環境面、コスト面での問題を抱えています。

 

2015-09-19_15-26-54

図1. アルデヒド、ケトンからのアルキン合成常法

今回米国、ペンシルバニア大学のWalshらはスルホキシドを触媒前駆体に用いたスルフェナート触媒を利用することで、塩化ベンジル誘導体と芳香族アルデヒドを反応剤とした新規触媒的アルキン合成法を開発したので紹介します(図1 This work)。

“Organocatalytic Synthesis of Alkynes”

Zhang, M.; Jia, T.; Wang, C. Y.; Walsh, P. J.; J. Am. Chem. Soc. 2015137, 10346. DOI: 10.1021/jacs.5b06137

 

Sulfenate anion (RSO)の有機分子触媒への応用

今回触媒として用いられたスルフェナートはスルフェン酸(RSOH)の共役塩基であり、高い求核性と優れた脱離能を併せもつことが知られています。有機合成化学の分野においてスルフェナートは様々なスルホキシド合成の重要な中間体として用いられてきました。

一方で、カップリング反応における有機分子触媒として用いられた例は一例のみでした。2014年Walshらはハロゲン化ベンジル誘導体からtrans-スチルベン類が生成するホモカップリング反応において、スルフェナートが触媒として機能することを初めて明らかにしています(図2)[1]

2015-09-19_15-34-01

図2 スルフェナート触媒を用いたホモカップリング反応

 

更に今回彼らはスルフェナート触媒が異なる二種の求電子剤である塩化ベンジル誘導体と芳香族アルデヒドのクロスカップリングを促進し、ジアリールアセチレンを与えることを見出しました。

 

本反応の特徴と応用

KOtBu存在下、空気中で安定な触媒前駆体から反応溶液中でスルフェナートを調製し、塩化ベンジル誘導体と芳香族アルデヒドを加熱攪拌するとジアリールアセチレンが生成します。本触媒系を用いれば、わずか1時間で反応が完結し、ハロゲンやシアノ基、ヒドロキシ基など様々な官能基を有するジアリールアセチレンが高い収率で得られました(図 3)。グラムスケールでのアルキン合成が可能である点も本反応の特筆すべき点だと言えます。また塩化ベンジルの代わりに塩化アリル誘導体を用いることで共役エンイン骨格の構築も可能だとわかりました。

2015-09-19_15-36-13

図3 今回報告された反応 

【訂正】図3、下スキーム生成物は共役エンインであり、誤って炭素が1つ多く記載されています。申し訳ございません

反応機構解明研究

Walshらは以下のような反応機構を提案しています。

  1. スルフェナートと塩化ベンジルの求核置換反応により化合物Bが生成
  2. 化合物Bのα位を脱プロトン化し化合物Cとなる
  3. 化合物Cから芳香族アルデヒドへ求核付加反応し化合物Dが生成
  4. 化合物Dの脱水反応により化合物Eを与える
  5. スルフェナートの脱離反応によりジアリールアセチレンが生成

 

2015-09-19_15-37-37

図4 推定反応機構

 

実際に筆者らは想定される触媒サイクルの中間体DEを別途合成し、塩基を作用させることで、中間体Dからは中間体E、中間体Eからはアルキンが生じていることを確認した(Scheme 3a, 3b)。なお塩基性条件下で中間体Dからは化合物Eだけでなく、化合物Bも得られました。このことから中間体Dからアルデヒドと化合物Cが生成する逆反応が進行していることが示唆されます。

本反応は触媒的に炭素–炭素三重結合を形成し、多様なアルキンが合成可能であるという点で実用性が高い反応ではないでしょうか。またスルフェナートを有機分子触媒として開拓した点も興味深いといえます。今後もスルフェナート触媒の幅広い反応での活躍を期待したいと思います。それにしても、本論文のタイトルは大変シンプルで好感がもてます。こういう仕事をしたいですね。

 

関連文献

  1.  Zhang, M.; Jia, T.; Yin, H.; Carroll, P. J.; Schelter, E. J.; Walsh, P. J. Angew. Chem., Int. Ed. 2014, 53, 10755. DOI:10.1002/anie.201405996

 

関連書籍

 

外部リンク

 

The following two tabs change content below.
bona
愛知で化学を教えています。よろしくお願いします。
bona

最新記事 by bona (全て見る)

関連記事

  1. カーボンナノチューブをふりかえる〜Nano Hypeの狭間で
  2. 有機の王冠
  3. 硫黄配位子に安定化されたカルボンの合成
  4. JSRとはどんな会社?-2
  5. 私がなぜケムステスタッフになったのか?
  6. 化学研究ライフハック:化学検索ツールをあなたのブラウザに
  7. ナノチューブを簡単にそろえるの巻
  8. 生体深部イメージングに有効な近赤外発光分子の開発

コメント

    • tgpk
    • 2016年 1月 06日

    Wide applicationのエンイン合成の生成物は共役エンインではないでしょうか。

    • webmaster
      • webmaster
      • 2016年 1月 06日

      コメントありがとうございます。ホントですね。ミスです。後々画像を変更いたしますが、取り急ぎ記事に訂正を加筆しておきました。ありがとうございます。

  1. この記事へのトラックバックはありません。

注目情報

ピックアップ記事

  1. 2010年日本化学会各賞発表-学会賞-
  2. 炭素繊維は鉄とアルミに勝るか? 1
  3. 情報守る“秘密の紙”開発
  4. 1,3-ジオールの不斉非対称化反応による光学活性オキサゾリン誘導体の合成
  5. 【無料】化学英語辞書がバージョンアップ!
  6. 三菱ケミカル「レイヨン」買収へ
  7. ジアゾメタン
  8. マット・シェア Matthew D. Shair
  9. トクヤマが参入へ/燃料電池部材市場
  10. センター試験を解いてみた

注目記事

関連商品

注目情報

試薬検索:東京化成工業



最新記事

「電子の動きを視る」ーマックス・プランク研究所・Krausz研より

「ケムステ海外研究記」の第13回目は、第6回目の志村さんのご紹介で、マックス・プランク量子光学研究所…

岩澤 伸治 Nobuharu Iwasawa

岩澤 伸治 (いわさわ のぶはる、19xx年x月x日-)は、日本の有機化学者である。東京工業大学 教…

NCL用ペプチド合成を簡便化する「MEGAリンカー法」

ワシントン大学・Champak Chatterjeeらは、独自開発した固相担持ユニット「MEGAリン…

有機合成化学協会誌2017年5月号 特集:キラリティ研究の最前線

有機合成化学に関わる方ならばおなじみの有機合成化学協会誌。有機合成化学協会の会員誌であり、様々な有機…

エッセイ「産業ポリマーと藝術ポリマーのあいだ」について

Tshozoです。先日Angewandte Chemie International Edition…

キラルアニオン相関移動-パラジウム触媒系による触媒的不斉1,1-ジアリール化反応

2016年、ユタ大学・Matthew S. Sigmanらは、電子不足末端アルケンのエナンチオ選択的…

Chem-Station Twitter

PAGE TOP