[スポンサーリンク]

化学者のつぶやき

不活性アルケンの分子間[2+2]環化付加反応

 

シクロブタンは歪みをもつ四員環構造をもつ物質群。天然物や医薬品の部分骨格としてみられ、また合成化学の中間体としてよくもちいられます。[1]

その代表的な構築法として[2+2]環化付加反応が挙げられます(図 1)。[2+2]熱環化付加反応は対称禁制であり、ルイス酸触媒 [2]、もしくは遷移金属触媒[3]を用いない限り進行しません。一方で[2+2]光環化付加反応は許容であり、ペリ環状反応、光触媒やルイス酸触媒を用いた反応[4]などが研究されています。これまでに熱・光のいずれの反応も高い位置・立体選択性を達成した例が報告されています。

 

2015-11-11_17-24-13

図1. [2+2]環化付加反応によるシクロブタン及びシクロブテンの合成法

しかし基質として極性官能基をもつアルケン、歪みをもつアルケン、発色団と共役したアルケンなど特定のアルケンを用いる場合がほとんどであり、エチレンやプロピレンなどの不活性アルケンには不向きでした。

最近、米国プリンストン大学のChirikらは、鉄触媒を合理的に設計することで不活性アルケンの分子間[2+2]環化付加反応により1,2-及び1,3-二置換シクロブタンの位置選択的かつ立体選択的な合成を達成し、Science誌に報告しました。

 

“Iron-catalyzed intermolecular [2+2] cycloadditions of unactivated alkenes”

Hoyt, J. M.; Schmidt, V. A.; Tondreau, A. M.; Chirik, P. J.;Science 2015, 349, 960. DOI: 10.1126/science.aac7440

 

今回は本反応について紹介したいと思います。

 

ホモ[2+2]環化付加反応

これまでにChirikらは、ピンサー型三座配位子であるビスイミノピリジン(PDI)の鉄錯体がα,ω-ジエンの分子内[2+2]環化付加反応を触媒し、シクロブタンを与えることを見出していました[5]。この反応において、PDI配位子の酸化還元能が高酸化状態の鉄三価のメタラサイクルの形成と還元的脱離を促進します(図 2)。

2015-10-31_15-46-31

図2 [2+2]環化付加反応におけるPDI配位子の特徴

Chirikらは本論文で、新たな配位子を設計することでPDI鉄錯体を不活性アルケンの分子間反応へと適用しました。配位子設計のポイントは以下の3つ。

  • 水素移動が生じない置換基を付ける
  • 空の配位座を作らせないことでβ水素脱離を抑制する
  • 嵩高い配位子を用いることで還元的脱離を促進する

第一世代触媒である(iPrPDI)Fe(N2)を用いた場合、配位子のAr基のiPr基から基質への水素移動が進行するためアルケンの水素化と触媒の失活が起こってしまいます。iPr基をMe基に変換した(MePDI)Fe(N2)(①)を用いた場合は水素移動反応を抑制できる一方、β水素脱離が還元的脱離と競合するため鎖状のtail-to-tail二量体が副成するなどの問題がありました。そこで(MePDI)Fe(N2)のイミン上のMe基をEt基に変換した錯体1(①、②)、及び(iPrPDI)Fe(N2)のAr基のiPr基をシクロペンチル基に変換した錯体2(①、③)を用いた(図3)ところ、いずれも高い位置・立体選択的に目的のtrans-1,2-二置換シクロブタンを与えることが分かりました。反応後は基質のアルケンと生成物のシクロブタンしか観測されず、グラムスケールでの反応が可能です。

 

2015-11-11_17-28-24

図3 各触媒における触媒機構

 

ヘテロ[2+2]環化付加反応

続いてChirikらは、PDI鉄錯体を用いたジエンとアルケンのヘテロ[2+2]環化付加反応を開発しました。この反応はホモ[2+2]環化付加反応の反応機構とは異なり、ジエンが鉄中心にη4配位してからアルケンが挿入、生成したメタラサイクルが還元的脱離することでcis-1,3-二置換シクロブタンが生成します(図 4)。彼らは2011年に、(MePDI)Fe(N2)を用いてブタジエンとエチレンのヘテロ[2+2]環化付加反応によるビニルシクロプロパンの合成[6]を報告してたものの、嵩高いジエンに対してはβ水素脱離による鎖状化合物が生成する、または反応が進行しないなどの問題点がありました。またホモ[2+2]環化付加反応で有効であった触媒12もここでは通用せず、嵩高いジエンであるミルセンと1-ヘキセンの反応ではβ水素脱離を経由したヒドロビニル化反応が進行してしまいます。そこで、β水素脱離をより強力に抑制するため、剛直な構造をもつ配位子の鉄錯体4を設計しました。錯体4を用いるとβ水素脱離由来の副生成物の生成を抑えることができ、ミルセンと様々なアルケンの[2+2]環化付加反応を高い位置・ジアステレオ選択性で行うことに成功しています。

 

2015-11-11_17-31-28

図4. PDI鉄触媒を用いたヘテロ[2+2]環化付加反応

まとめ

今回Chirikらは鉄錯体の配位子の設計により、不活性アルケンを基質とした位置・立体選択的な1,2-と1,3-二置換シクロブタンの合成法を報告しました。大量に生産されて安価なエチレンやプロピレンなどから室温・neatという容易な条件でシクロブタンを合成できるため、工業的応用への期待ができます。さらなる配位子設計によって基質適用範囲が広がり、今回のシクロブタンの合成法が一般的な方法の1つになることを期待したいと思います。

 

関連動画

 

参考文献

  1. Xu, Y.; Conner, M. L.; Brown, M. K. Angew. Chem., Int. Ed. 2015, 54, 11918. DOI: 10.1002/anie.201502815
  2. Conner, M. L.; Xu, Y.; Brown, M. K. J. Am. Chem. Soc. 2015, 137, 3482. DOI:10.1021/jacs.5b00563
  3. Fan, B.-M.; Li, X.-J.; Peng, F.-Z.; Zhang, H.-B.; Chan, A. S. C.; Shao, Z.-H. Org. Lett. 2010, 12, 304. DOI: 10.1021/ol902574c
  4. Du, J.; Skubi, K. L.; Schultz, D. M.; Yoon, T. P. Science 2014, 344, 392. DOI:10.1126/science.1251511
  5. Bouwkamp, M. W.; Bowman, A. C.; Lobkovsky, E.; Chirik, P. J. J. Am. Chem. Soc. 2006, 128, 13340. DOI:10.1021/ja064711u
  6. Russell, S. K.; Lobkovsky, E.; Chirik, P. J. J. Am. Chem. Soc 2011, 133, 8858. DOI: 10.1021/ja202992p

 

The following two tabs change content below.
bona
愛知で化学を教えています。よろしくお願いします。
bona

最新記事 by bona (全て見る)

関連記事

  1. 比色法の化学(後編)
  2. 核酸医薬の物語1「化学と生物学が交差するとき」
  3. 近況報告PartIV
  4. 禅問答のススメ ~非論理に向き合う~
  5. 有名研究者の論文であったとしても
  6. 無水酢酸は麻薬の原料?
  7. IRの基礎知識
  8. Micro Flow Reactorで瞬間的変換を達成する

コメント

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

注目情報

ピックアップ記事

  1. フランク・グローリアス Frank Glorius
  2. Small Molecule Medicinal Chemistry -Strategies and Technologies-
  3. NHC‐ZnBr2触媒を用いた二酸化炭素の末端エポキシドへの温和な付加環化反応
  4. ウルマンカップリング Ullmann Coupling
  5. ペッカ・ピューッコ Pekka Pyykkö
  6. あなたの天秤、正確ですか?
  7. 「大津会議」参加体験レポート
  8. ケミカルバイオロジー chemical biology
  9. 理系のためのフリーソフト Ver2.0
  10. 三菱ケミカル「レイヨン」買収へ

注目記事

関連商品

注目情報

試薬検索:東京化成工業



最新記事

二次元物質の科学 :グラフェンなどの分子シートが生み出す新世界

内容2004年にブレークしたグラフェンは,電子材料はじめさまざまな応用が期待される新素材の担…

高機能な導電性ポリマーの精密合成法の開発

そろそろ100回目が近づいてきました。第97回のスポットライトリサーチ。今回は首都大学東京 理工学研…

ストックホルム国際青年科学セミナー参加学生を募集開始 ノーベル賞のイベントに参加できます!

一週間スウェーデンに滞在し、ノーベル賞受賞者と直接交流するなどの貴重な機会が与えられるセミナーSto…

「電子の動きを観る」ーマックスプランク研究所・ミュンヘン大学・Krausz研より

「ケムステ海外研究記」の第13回目は、第6回目の志村さんのご紹介で、マックス・プランク量子光学研究所…

岩澤 伸治 Nobuharu Iwasawa

岩澤 伸治 (いわさわ のぶはる、19xx年x月x日-)は、日本の有機化学者である。東京工業大学 教…

NCL用ペプチド合成を簡便化する「MEGAリンカー法」

ワシントン大学・Champak Chatterjeeらは、独自開発した固相担持ユニット「MEGAリン…

Chem-Station Twitter

PAGE TOP