[スポンサーリンク]

化学者のつぶやき

水から電子を取り出す実力派触媒の登場!

人工光合成とは

植物は太陽光を利用して、水や二酸化炭素から有機物を創り出す光合成を行っています。石炭や石油も、石炭や石油も昔の植物やプランクトンの化石であることを考えると、我々人類は、植物がずっと昔から光合成により蓄えた貯金を食いつぶして生活できているといえます。「人工光合成」と呼ばれる研究分野では、人類が自ら光エネルギーを化学エネルギーとして蓄え、借金を食い止めたり、将来に貯金したりすることを目指しています。

人工光合成においては、植物の光合成と同様に3つのプロセスがあります。(1)光エネルギーをうまく取り込んで変換し、(2)電子を水から奪い、(3)水やCO2に供給することです。それぞれに困難な課題がありますが、中でも水から電子を奪って酸素を出す反応は非常に困難で、反応も遅いことが知られています。

2H2O → 4H+ + 4e + O2

酸素発生の半反応式は上記の通りですが、この式からわかるように、二つの水分子から4つの電子を引き抜いて2つの酸素原子、もしくはそれに近い状態の酸素原子をくっつけるという反応が必要になります。さらに途中段階で過酸化水素(H2O2)が遊離しやすいために全体の反応を素早く行わなければならないこと、この過酸化水素や他の活性中間体の反応性が高く触媒そのものを分解してしまう可能性があることなど、クリアしなければならない課題がたくさんあります。さらに、ルテニウムなどではなく、植物が使っているマンガンのような安価で豊富な金属を触媒中心に用いることができれば実用化の面でも期待できます。

最近、酸素発生触媒として画期的な材料が分子科学研究所の正岡准教授らの研究グループから報告されました。

“A pentanuclear iron catalyst designed for water oxidation”

Okamura, M.; Kondo, M.; Kuga, R.; Kurashige, Y.; Yanai, T.; Hayami, S.; Praneeth, V. K. K.; Yoshida, M.; Yoneda, K.; Kawata, S.; Masaoka, S.;Nature 2016, 530, 465. DOI: 10.1038/nature16529

正岡グループが酸素発生触媒として選んだのはマンガンよりもさらに安価で豊富な鉄触媒です。そして4電子の授受をスムーズに行うため、なんと5個の鉄イオンが並んだ、鉄5核錯体に着目しました。

鉄触媒が酸素発生触媒となる

この鉄錯体を触媒として用いたところ、1秒間に1900回も反応するというとんでもないターンオーバー頻度(TOF)が達成されるということを見出しました。これは、他の鉄錯体の最高記録の1000倍以上、レドックス安定性の高いコバルト触媒の記録を凌駕し、ルテニウム触媒の世界最高記録と遜色ない素晴らしい値です。人工系では、ルテニウムやコバルト、マンガンなどの錯体触媒や白金ナノ粒子などがよく使われますが、今回の正岡グループの成果は、生物の天然光合成系と遜色ない触媒系を、人工系で、それも鉄系で達成することができることを示しており、興味深い成果であると言えます。

2016-03-29_12-48-19

専門家同士のコラボレーション

この研究は正岡・近藤グループの電気化学・分光電気化学テクニックの上に米田・川田先生らの分子合成技術、倉重・柳井グループの分子軌道計算、速水教授のメスバウアー分光による鉄の価数決定などの技術を結集して、途中状態を厳密に決定することで、確度の高い触媒機構を提案しています。

それがはっきりとわかるのが59ページにも及ぶSupporting Informationです。先に述べたとおり、酸素発生触媒は4電子と2つの水分子を受け取り、酸素原子を取り出し、酸素原子間に結合を作ってから話してまた元の触媒に戻るというとっても複雑な機構が必要となります。

そのため通常では、中間状態の検出や予想はしても、実際の状態を正確にとらえることはなかなか出来ません。中間状態を検出するだけでも大変なものを、4電子反応の各ステップについて詳細に実験を行い、S1およびS2という二つの中間体の単離にも成功しています。

その結果、S2という中間体が【2つの鉄が3価の高スピン状態、1つが2価の高スピン、残り2つが2価の体スピン】であることを決定しています。これが計算結果とも良い一致を示していることは、この論文の説得力を大きく増しているといえます。4電子酸化が起こった後で水分子が入っていくようですが、鉄錯体の構造がゆがみながら水分子が入り込んでいく姿なども計算され、動画も公開されています。

というわけで、今回は、Natureの記事から論文を紹介させて頂きました。

この触媒は、人工光合成の中で、酸素発生という難しい役どころをこなす名俳優の誕生、といったところでしょうか。記事のクオリティの高さがわかる良い論文と思いました。今後の発展を期待いたします!

外部リンク

関連書籍

The following two tabs change content below.
大学教員

関連記事

  1. 超分子カプセル内包型発光性金属錯体の創製
  2. ナノチューブを簡単にそろえるの巻
  3. 留学せずに英語をマスターできるかやってみた(4年目)
  4. トイレから学ぶ超撥水と超親水
  5. PACIFICHEM2010に参加してきました!Final!
  6. スローン賞って知っていますか?
  7. 英文読解の負担を減らすマウスオーバー辞書
  8. π⊥ back bonding; 逆供与でπ結合が強くなる?!

コメント

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

注目情報

ピックアップ記事

  1. 花粉症対策の基礎知識
  2. 化学者も参戦!?急成長ワクチン業界
  3. チャド・マーキン Chad A. Mirkin
  4. 「石油化学」の新ネーミング募集!
  5. オキシ-コープ転位 Oxy-Cope Rearrangement
  6. 「ニコチンパッチ」6月1日から保険適用
  7. 中国へ講演旅行へいってきました①
  8. カーン グリコシド化反応 Kahne Glycosidation
  9. アセトアルデヒドが香料に 食品添加物として指定了承
  10. 希少金属

注目記事

関連商品

注目情報

試薬検索:東京化成工業



最新記事

トーマス・ホイ Thomas R. Hoye

トーマス・R・ホイ (Thomas R. Hoye、19xx年xx月xx日-)は、アメリカの有機化学…

Lindau Nobel Laureate Meeting 動画集のご紹介

Tshozoです。タイトルの件、"ヨーロッパリベンジ"の動画を見ながらWeb探索を夜な夜な続けており…

デヴィッド・ニセヴィッツ David A. Nicewicz

デヴィッド・A・ニセヴィッツ (David A. Nicewicz、19xx年x月x日-)は、米国の…

配位子だけじゃない!触媒になるホスフィン

N–N結合形成反応を触媒する環状ホスフィンが報告された。四員環ホスフィン(ホスフェタン)を触媒とし、…

フローリアクターでペプチド連結法を革新する

2014年、東京工業大学・布施新一郎らはペプチド結合形成を行なうマイクロフローリアクター法を開発した…

GRE Chemistry 受験報告 –試験対策編–

2017年4月に、米国の大学院の出願の際に必要になるテストである GRE Chemistry を受験…

Chem-Station Twitter

PAGE TOP