[スポンサーリンク]

化学者のつぶやき

穴の空いた液体

 

ゼオライト(沸石)や金属有機構造体(MOF: Metal organic frameworks)などに代表される多孔性材料は、その広大な表面積を利用した、ガス貯蔵や触媒、分子ふるいなどへの応用が世界中で研究されています。

多孔性材料は空孔を維持するのに十分な強度をもつために室温で固体であるため、現在のフロー・プロセスを基本とする工場規模での実用化が進んでいません。この問題を解決し得る、多孔性を有し、かつ、流動性のある材料として「多孔性液体」が考え出されました[1]。多孔性液体とは、その内部に空孔をもつため少ないエネルギーで物質の吸着・脱着ができ、さらに、ポンプと配管で輸送可能な流動性を併せもつような材料です(図 1)。多孔性液体は、省エネルギー化を目指した化学工場への応用や全く新しい形式の溶媒としての機能が期待できます。

2016-05-01_21-39-17

図1 多孔性液体のコンセプト

 

多孔性液体の合成戦略

連続した構造体で空孔を維持する場合は、どうしても構造が頑強になってしまい、流動性をもたせにくくなります。

一方、液体は必然的に流動してあらゆる隙間を埋めてしまうため、流動性の高い柔軟な構造では空孔を維持するのは困難です。つまり、多孔性と流動性を併せもつ多孔性液体は本質的にジレンマを抱えている。

そこで近年、英国クイーンズ大学のJames教授らは、連続した構造体の最小単位で空孔を維持できる有機分子ケージに注目しました。彼らはまず、リバプール大学のCooper教授らによって合成された、固体状態で多孔性を示すかご状イミン[2]に様々な種類のアルキル鎖を導入し、ケージ間の相互作用を減らすことで融点を下げ、室温で液状の多孔性材料の開発を行いました[3]。合成されたアルキル置換かご状イミンは50 °Cで融解するものの、アルキル鎖がケージの内部に入り込み空孔を埋まってしまうために、多孔性液体の開発には至りませんでした。

そこで最近彼らは、ループ状に閉じたクラウンエーテルを置換基に用いることで、ケージ内部への侵入を防ぎ、かつ、流動性を確保することができるのではないかと考えました[4]

2016-05-01_21-43-08

図2 多孔性液体の合成戦略

 

多孔性液体の合成と評価

先の合成戦略に基づき合成されたクラウンエーテル・ケージは、それ自身では室温で固体であり、昇温してもクラウンエーテル部分が壊れてしまい、液化させることはできませんでした。しかし、クラウンエーテル・ケージは15-クラウン-5に高濃度で溶解させることができました。クラウンエーテル・ケージのクラウンエーテル溶液は、分子動力学による計算と陽電子消滅法(補足)による測定実験の両方から空孔の存在が支持されました。メタンガスの吸着量は、純粋な15-クラウン-5の8倍であり、温度を上げても吸着量の劇的な低下は見られませんでした。

しかし、クラウンエーテル・ケージは大量合成に向かず、また粘度も高いなど、問題点がありました。そこで彼らは、クラウンエーテル・ケージの改良版としてのスクランブル・ケージを開発しました。

2016-05-01_21-48-19

図3 二つの多孔性液体

スクランブル・ケージは市販されている試薬からたったの一段階で合成可能です。また、二種類のジアミンを用いることで、構造の多様性を増やし、溶解性の向上に成功しています。スクランブル・ケージのヘキサクロロプロペン溶液において、メタンガスの1H NMR実験から空孔内部にメタンが吸着していることが確かめられられています。また、キセノンを溶かし込んだ多孔性液体にケージに入り込める大きさであるクロロホルムを添加した場合、キセノンの大幅な脱離が観測されました。一方、ケージに入り込めない大きさの1-t-ブチル-3,5-ジメチルベンゼンを添加した場合にはキセノンの脱離は観測されないなど、サイズ選択性が高いことが示されました。

 

まとめ

今回、James教授らは適切なケージ置換基のデザインと適切な溶媒の選択により、多孔性と流動性をもつ多孔性液体を開発しまいsた。固体の多孔性材料と比較すると着脱能に改善の必要はあるものの、今後のさらなる研究によって、触媒反応、抽出、気体の貯蔵や分離などへの応用が期待されます。

 

参考文献

  1. O’Reilly, N., Giri, N., James, S. L. Chem. Eur. J. 2007, 13, 3020. DOI: 10.1002/chem.200700090
  2. Cooper, A. I. and coworker, Nature Mater. 2009, 8, 973. DOI:10.1038/nmat2545
  3. James, S. L. and coworker, Chem. Sci. 2012, 3, 2153. DOI: 10.1039/C2SC01007K
  4. Giri, N.; Del Pópolo, M. G.; Melaugh, G.; Greenaway, R. L.; Rätzke, K.; Koschine, T.; Pison, L.; Gomes, M. F. C.; Cooper, A. I.; James, S. L.;Nature 2015, 527, 216. DOI: 10.1038/nature16072

 

関連リンク

  1. Mastalerz, M “Materials chemistry: Liquefied molecular holes” Nat., 2015, 527, 174. (Nature, News & Views )
  2. 2. Cooper Group, News, “Scientists invent world’s first ‘porous liquid

 

補足

陽電子消滅法

陽電子消滅寿命測定法は、陽電子をプローブとすることで非破壊・非接触で自由体積空孔のサイズ・分布を測定することができる測定法。原理は、放射生同位体である22Naがβ崩壊するときに得られる陽電子(電子の反物質で電子と同じ質量をもつが、電荷は正である)を物質中に入射すると、電子と衝突して対消滅する。この時、消滅した質量がエネルギー(光子)として放出される。

空孔が多い物質ほど、陽子が対消滅する確率が小さいので陽電子寿命が長くなる。そのため、陽電子寿命を測定することで資料の空孔のサイズがわかる。

The following two tabs change content below.
bona
愛知で化学を教えています。よろしくお願いします。
bona

最新記事 by bona (全て見る)

関連記事

  1. 糖鎖クラスター修飾で分子の生体内挙動を制御する
  2. 化学オリンピックを通して考える日本の理科教育
  3. タンパク質の非特異吸着を抑制する高分子微粒子の合成と応用
  4. 【悲報】HGS 分子構造模型 入手不能に
  5. 恋する創薬研究室
  6. インターネットを活用した英語の勉強法
  7. 第95回日本化学会付設展示会ケムステキャンペーン!Part II…
  8. 未解明のテルペン類の生合成経路を理論的に明らかに

コメント

  1. おもしろい。色んな応用できそう。コスモクリーナーとか。

    • pre u student
    • 2016年 5月 07日

    このトピックでトークを作ろうと思っているのですがいくつか質問があります。
    ・かご状イミンの構造式はなにか
    ・なぜクロロフィルを添加するとキセノンが脱離するのか(置換されるから?)
    回答していただけたら幸いです。

    • bona

      かご状イミンは以下の様なものです。クロロフィルじゃなくてクロロホルムですね。理由は置換されるからです。よろしくお願いいたします。

  2. 不思議な事を考える人がいるもんだな

  3. これを溶媒に使うと固液界面の反応(触媒とか電極とか)がだいぶ変わりそうな印象。

    • Nick
    • 2016年 5月 09日

    いつも楽しく読ませていただいております。液体の多孔性は応用が色々見えるので、安価に作れるようになれば価値は大きいですね。
    一点質問なのですが、多孔性材料が「現在のフロー・プロセスを基本とする工場規模での実用化が進んでいません」というのはどのような意味でしょうか。石油化学のフローリアクターの多くでは多孔性材料であるゼオライトが触媒として最も多く使われています。
    固定床ではなく、流動床でもなく、固体と液体を混ぜて流すスラリープロセスが難しいという意図でしょうか。

  1. この記事へのトラックバックはありません。

注目情報

ピックアップ記事

  1. 【速報】2010年ノーベル物理学賞に英の大学教授2人
  2. テトロドトキシン てとろどときしん tetrodotoxin(TTX)
  3. 大学入試のあれこれ ②
  4. 実例で分かるスケールアップの原理と晶析【終了】
  5. 藤原・守谷反応 Fujiwara-Moritani Reaction
  6. クリスティーナ・ホワイト M. Christina White
  7. 子供と一緒にネットで化学実験を楽しもう!
  8. 自由の世界へようこそ
  9. 大正製薬、女性用の発毛剤「リアップレディ」を来月発売
  10. ジェイ・キースリング Jay Keasling

注目記事

関連商品

注目情報

試薬検索:東京化成工業



最新記事

元素紀行

先日、こんな記事を読みました。内容を一言で申せば、筆者の前川ヤスタカさんご自身の著書タイトルである「…

日本酸素記念館

大陽日酸の記念館で、創業時にドイツから輸入した酸素分離機が展示されていて、酸素分離機は、認定化学遺産…

室温でアルカンから水素を放出させる紫外光ハイブリッド触媒系

 プリンストン大学・Eric Sorensenらは、光駆動型水素原子移動(HAT)触媒-卑金属触媒ハ…

ケムステイブニングミキサー2017ー報告

先週の日本化学会年会に参加の方々お疲れ様でした。ケムステでは、例年通り「付設展示会ケムステキ…

芳香族カルボン酸をHAT触媒に応用する

ミュンスター大・Gloriusらは、可視光レドックス触媒を用いる位置選択的なC(sp3)-Hチオトリ…

日本薬学会第137年会  付設展示会ケムステキャンペーン

先日閉会した日本化学会年会。付設展示会では毎年恒例の付設展示会ケムステキャンペーンを行いました(Pa…

Chem-Station Twitter

PAGE TOP