[スポンサーリンク]

化学者のつぶやき

アルケンとニトリルを相互交換する

[スポンサーリンク]

 

シアノ基は、様々な官能基に変換可能であるだけでなく、電子求引基として近接炭素の官能基化を容易にするため、医農薬品や機能性ポリマーの原料として広く用いられています。シアノ基を有するニトリル類合成法は、アルケンにシアン化水素を付加させる方法が主流です(図1)。しかし、この方法では高い毒性と揮発性、さらに爆発の危険性をもつシアン化水素を大量に用いる必要があります。

2016-05-04_10-24-25

図1. オレフィンのヒドロシアノ化反応

 

最近、ドイツマックスプランク研究所のMorandi教授らは、シアン化水素を用いないニッケル触媒によるアルキン–ニトリル相互変換反応の開発に成功しました。

“Catalytic reversible alkene-nitrile interconversion through controllable transfer hydrocyanation”

Fang, X.; Yu, P.; Morandi, B.;Science 2016, 351, 832. DOI: 10.1126/science.aae0427

アルケン–ニトリル相互変換反応の設計

 著者らは、水素ガスの代わりにアルコールを用いてケトンを還元する水素移動反応を参考に、シアン化水素の転位反応を設計しました。

炭素–シアノ結合の金属触媒への酸化的付加、β水素脱離、配位子するオレフィンの交換、オレフィンへのヒドリドの挿入、還元的脱離による炭素–シアノ結合の形成を連続して行うことで、アルキン–ニトリルの相互変換を平衡反応にできるのではないかと考えました。

炭素–ニトリル結合への活性の高い0価のニッケル錯体(Ni(cod)2)、配位子としてビス[2-(ジフェニルホスフィノ)フェニル]エーテル(DPEphos)、強いルイス酸性を有する塩化ジメチルアルミニウムを共触媒とし、トルエン溶媒中加熱することで、望みのアルケン–ニトリル相互変換反応を実現しました(図2)。

2016-05-04_10-26-33

図2. ニッケル触媒を用いたアルケン–ニトリル相互変換

 

本反応のポイント

  1. 有毒なシアン化水素が必要なく、また発生もしない
  2. ヒドロシアノ化だけでなく、脱シアン化水素反応も可能になりうる
  3. 単純な駆動力で平衡を偏らせることが可能になる

 

ヒドロシアノ化反応

副生物が気体として系外に放出されるようなニトリル類を用いることで、平衡を生成系に偏らせることに成功しています(図3)。

この方法では、通常のヒドロシアノ化が分岐体を与えることとは相補的に、直鎖状生成物が得られます。さらに、官能基許容性が高く、ヘテロ環をはじめ、多くの官能基をもつオレフィンに対して良好な収率でニトリルを与えます。そのため、合成終盤での適用が可能であり、セドレンやスクラレオールなどの天然物、及び、チロシンやエストロンのような生体分子でも高収率でのヒドロシアノ化に成功しています。また、ブチルニトリルを溶媒研反応剤として用いることで、低コストかつグラムスケールでのヒドロシアノ化にも成功しています。

2016-05-04_10-29-37

図3. 副生物の放出を駆動力とするヒドロシアノ化反応

 

逆ヒドロシアノ化反応

逆ヒドロシアノ化反応は熱力学的に不利であるが、ノルボルネンまたはノルボルナジエンといった環ひずみを有するオレフィンをシアン化水素の受容体とし、その環歪の解消を駆動力とすることで、平衡を偏らせることに成功してます(図4)。

1級、2級、3級ニトリルにおいても反応は良好に進行し対応するオレフィンを与えるようです。また、このオレフィン形成においてほとんど異性化生成物が観測されていません。一般にニッケル–ヒドリド種はアルケンの異性化を起こすことが知られているにもかかわらず、異性化がみられていません。

さらに、ヒドロシアンの受容体としてノルボルネンとノルボルナジエンのどちらを用いるかで熱力学的支配による生成物か速度論的支配による生成物かの作り分けが可能です。またDiels-Alder反応と組み合わせることで芳香族化合物の合成にも成功しています。

図4. 環ひずみの解消を駆動力とする逆ヒドロシアノ化反応

図4. 環ひずみの解消を駆動力とする逆ヒドロシアノ化反応

 

反応機構解析

初期的な反応機構解析として、重水素標識反応及び熱力学による反応解析を行っています(図5)。重水素化されたシアン化物によるヒドロシアノ化反応により、cisに重水素とニトリルを有するシアノ化物が得られたことから、重水素とシアノ基がsyn付加していることが明らかとなりました。また、4種類の反応物質を当量を変えて反応させても最終生成物の存在比がほぼ同じになることから、この反応は熱力学的平衡状態に落ち着くことがわかりました。

2016-05-04_10-31-59

重水素標識反応及び熱力学による反応解析

 

まとめ

今回Morandiらは、シアン化水素を用いない安全で実用性の高いアルケン–ニトリル相互変換反応の開発に成功しました。ニトリルの化学の発展を促し、ファインケミカルの生産においても利用される可能性があります。

一方で、量論量の副生物が生成してしまうために、すでにシアン化水素を利用している企業が使用するかどうかはなかなか難しいところです。今後は、不斉合成及び反応機構の解明が進められる中で、今回の反応をモデルにさらなるアルケンの可逆付加反応の開発が期待されます。

 

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. 自分の強みを活かして化学的に新しいことの実現を!【ケムステ×He…
  2. 第96回日本化学会付設展示会ケムステキャンペーン!Part II…
  3. Carl Boschの人生 その10
  4. Brevianamide Aの全合成:長年未解明の生合成経路の謎…
  5. 小さなケイ素酸化物を得る方法
  6. アカデミックから民間企業への転職について考えてみる 第2回
  7. 神経変性疾患関連凝集タンパク質分解誘導剤の開発
  8. 【解ければ化学者】オリーブオイルの主成分の素はどれ?【脂肪の素っ…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 海水から「イエローケーキ」抽出に成功、米科学者グループが発表
  2. 全フッ素化カーボンナノリングの合成
  3. 背信の科学者たち 論文捏造はなぜ繰り返されるのか?
  4. モリブデンのチカラでニトロ化合物から二級アミンをつくる
  5. ⽔を嫌う CH₃-基が⽔をトラップする︖⽣体浸透圧調整物質 TMAO の機能溶液化学を、分⼦間相互作⽤の時空間精細解析で解明
  6. デヒドロアラニン選択的タンパク質修飾反応 Dha-Selective Protein Modification
  7. キッチン・ケミストリー
  8. ケテンの[2+2]環化付加反応 [2+2] Cycloaddition of Ketene
  9. 食中毒と衛生管理の重要性ーChemical Times特集より
  10. 触媒のチカラで拓く位置選択的シクロプロパン合成

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年7月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

【十全化学】核酸医薬のGMP製造への挑戦

「核酸医薬」と聞いて、真っ先に思い起こすのは、COVID-19に対するmRNAワ…

十全化学株式会社ってどんな会社?

私たち十全化学は、医薬品の有効成分である原薬及び重要中間体の製造受託を担っている…

化学者と不妊治療

これは理系の夫視点で書いた、私たち夫婦の不妊治療の体験談です。ケムステ読者で不妊に悩まれている方の参…

リボフラビンを活用した光触媒製品の開発

ビタミン系光触媒ジェンタミン®は、リボフラビン(ビタミンB2)を活用した光触媒で…

紅麹を含むサプリメントで重篤な健康被害、原因物質の特定急ぐ

健康食品 (機能性表示食品) に関する重大ニュースが報じられました。血中コレステ…

ユシロ化学工業ってどんな会社?

1944年の創業から培った技術力と信頼で、こっそりセカイを変える化学屋さん。ユシロ化学の事業内容…

日本薬学会第144年会付設展示会ケムステキャンペーン

日本化学会の年会も終わりましたね。付設展示会キャンペーンもケムステイブニングミキ…

ペプチドのN末端でのピンポイント二重修飾反応を開発!

第 605回のスポットライトリサーチは、中央大学大学院 理工学研究科 応用化学専…

材料・製品開発組織における科学的考察の風土のつくりかた ー マテリアルズ・インフォマティクスを活用し最大限の成果を得るための筋の良いテーマとは ー

開催日:2024/03/27 申込みはこちら■開催概要材料開発を取り巻く競争や環境が激し…

石谷教授最終講義「人工光合成を目指して」を聴講してみた

bergです。この度は2024年3月9日(土)に東京工業大学 大岡山キャンパスにて開催された石谷教授…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP