[スポンサーリンク]

一般的な話題

三中心四電子結合とは?

初めまして、さかのうえと申します。先月修士課程を卒業し、4月から某試薬メーカーで勤務しています。大学院では有機化学、特に有機典型元素化学の分野で高配位化合物の研究を行ってきました。

この度、Chem-Stationに有機典型元素化学にまつわる記事をもっと増やしたいと思い、ケムステスタッフにしていただきました。未熟者ですが、よろしくお願いいたします。

本題ー三中心四電子結合

さて今回は、「三中心四電子結合」について解説したいと思います。

高周期典型元素の特徴の一つとして、形式的にオクテット則を超えた価電子を有する、”超原子価化合物”が多数安定に存在するという点が挙げられます。

特に超原子価ヨウ素化合物が有名ですね。この、超原子価化合物を形成する際の3つの原子の間の結合様式として提唱されているのが、三中心四電子結合です。Pimentel[1]とRundle[2]によって独自に提唱され、Musher[3]によってまとめられたため、Rundle-PimentelモデルRundle-Musherモデルとも呼ばれています。例として、以前の記事でも登場した、XeF2を挙げます。[4]

XeF2の分子構造はF-Xe-Fの直線型です。このF-Xe-F間の結合様式が、まさに三中心四電子結合です。この結合は次のように成り立っていると考えられています。

まず中央のキセノン原子の5p軌道の1つと、両端のフッ素原子のそれぞれの2p軌道が直線的に相互作用し、3つの原子上に広がる結合性軌道(φ1)と反結合性軌道(φ3)、両端に局在化した非結合性軌道(φ2)に分裂します。ここにフントの規則に従って4個の電子を収容すると、結合性軌道(φ1)、非結合性軌道(φ2)に2つずつ配置され、反結合性軌道(φ3)は空となります(下図)。

The Rundle–Pimentel orbital model for 3c–4e hypervalent complexes.

F-Xe-FのRundle-Pimentelモデル(図は文献[4]より抜粋)

3つの原子にまたがる結合性軌道に2電子が収容されるため結合力が生じますが、中心原子と両端の原子との間の結合次数は0.5となります。さらに両端に局在化した非結合性軌道にも2電子収容されるために、負電荷が両端に偏ることが考えられます。

XeF2のF-Xe-F結合に、Xe原子の最外殻軌道は5p軌道が一つしか使われていません。この時、残りの最外殻軌道(5s軌道1つ、5p軌道2つ)はsp2混成軌道を形成しており、いずれも非共有電子対が収容されていると考えられます。これらを踏まえると、XeF2の構造は非共有電子対を明記して、次のように表記できます。

XeF2の構造

非共有電子対も配位子の1種と考えると、XeF2は5配位で三方両錘構造を取っていることがわかります。これと同様に、5配位の超原子価化合物は基本的には三方両錘構造を取ります。いくつか例をあげてみます。

5配位超原子価化合物の例

これらの化合物を例に説明するとわかりやすいかと思いますが、三中心四電子結合で形成されている、中心原子の上下をアピカル位と呼び、sp2混成軌道で形成されている、同一平面上にある3つをエクアトリアル位と呼びます。(シクロヘキサンのいす型配座の水素はアキシアル位とエクアトリアル位でしたね。対になる言葉が異なるのは不思議です。)

三中心四電子結合は結合次数が0.5になると先に述べましたが、5つの配位子が同じであるPF5の結合長を挙げて確認してみます。P-Fapical 結合は1.577 Å、P-Fequatorial 結合は1.534 Åであることから、確かに三中心四電子結合は通常の単結合より伸長していることが見て取れますね。

結合が長いということは当然安定性が低下する訳です。Ⅲ価の超原子価ヨウ素酸化剤は、ヨウ素-アピカル位結合が開裂しやすく、開裂に伴ってオクテット則を満たすⅠ価のヨウ素化合物へ還元されることで、酸化剤として働きます。

ケムステの記事に、ちょくちょく現れる超原子価化合物。その考えの基礎となる三中心四電子結合の解説がなかったので、初歩の部分を解説してみました。皆さまの理解の助けに少しでもなれば嬉しいです。

 

参考文献

  1. Pimentel, G. C. J. Chem. Phys. 1951, 19, 446. doi:10.1063/1.1748245
  2. Hach, R. J.; Rundle, R. E. J. Am. Chem. Soc. 1951, 73, 4321. doi:10.1021/ja01153a086
  3. Musher, J. I. Angew. Chem. Int. Ed. Engl. 1969, 8, 54. doi:10.1002/anie.196900541
  4. Braïda, B; Hiberty, P. C. Nature Chem. 2013, 5, 417. doi:10.1038/nchem.1619

関連書籍

関連リンク

The following two tabs change content below.

さかのうえ

試薬メーカーに勤務しています。修士課程まで有機化学、特に有機典型元素化学を専攻していました。典型元素化学をもっと広めたいです。

最新記事 by さかのうえ (全て見る)

関連記事

  1. グリコシル化反応を楽にする1位選択的”保護̶…
  2. 3.11 14:46 ②
  3. グラフィカルアブストラクト付・化学系ジャーナルRSSフィード
  4. プロドラッグって
  5. 有機反応を俯瞰する ー付加脱離
  6. 芳香環メタ位を触媒のチカラで狙い撃ち
  7. アライン種の新しい発生法
  8. 目指せ!! SciFinderマイスター

コメント

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

注目情報

ピックアップ記事

  1. ケミカル数独
  2. 育て!燃料電池を担う子供たち
  3. アルケンの実用的ペルフルオロアルキル化反応の開発
  4. たばこと塩の博物館
  5. ボロールで水素を活性化
  6. 化学者も参戦!?急成長ワクチン業界
  7. タキサン類の全合成
  8. 太陽電池セル/モジュール封止材料・技術【終了】
  9. ローゼンムント還元 Rosenmund Reduction
  10. 「架橋ナノゲル」を応用したがんワクチンDDS

注目記事

関連商品

注目情報

試薬検索:東京化成工業



最新記事

ストックホルム国際青年科学セミナー参加学生を募集開始 ノーベル賞のイベントに参加できます!

一週間スウェーデンに滞在し、ノーベル賞受賞者と直接交流するなどの貴重な機会が与えられるセミナーSto…

「電子の動きを観る」ーマックスプランク研究所・ミュンヘン大学・Krausz研より

「ケムステ海外研究記」の第13回目は、第6回目の志村さんのご紹介で、マックス・プランク量子光学研究所…

岩澤 伸治 Nobuharu Iwasawa

岩澤 伸治 (いわさわ のぶはる、19xx年x月x日-)は、日本の有機化学者である。東京工業大学 教…

NCL用ペプチド合成を簡便化する「MEGAリンカー法」

ワシントン大学・Champak Chatterjeeらは、独自開発した固相担持ユニット「MEGAリン…

有機合成化学協会誌2017年5月号 特集:キラリティ研究の最前線

有機合成化学に関わる方ならばおなじみの有機合成化学協会誌。有機合成化学協会の会員誌であり、様々な有機…

エッセイ「産業ポリマーと藝術ポリマーのあいだ」について

Tshozoです。先日Angewandte Chemie International Edition…

Chem-Station Twitter

PAGE TOP