[スポンサーリンク]

化学者のつぶやき

リガンド結合部位近傍のリジン側鎖をアジド基に置換する

フローニンゲン大学・Martin D. Witteらは、ビオチンとアジド導入剤を組み合わせた試薬「DtBio」を開発し、アビジンに対し水中でタンパク質選択的・位置選択的なリジンアミノ基側鎖のアジドへの変換を達成した。

“Targeted Diazotransfer Reagents Enable Selective Modification of Proteins with Azides”
Lohse, J.; Swier, L. J. Y. M.; Oudshoorn, R. C.; Médard, G.; Kuster, B.; Slotboom, D.-J.; Witte, M. D. Bioconjugate Chem. 201728, 913.  DOI: 10.1021/acs.bioconjchem.7b00110 (冒頭画像は本論文TOCより引用)

問題設定と解決した点

 アジド基は生体直交的な反応に関与し、タンパク質修飾にも用いられる有用な官能基である。 アジド基の導入法としては、停止コドンにアジド含有非天然アミノ酸を対応させる方法が知られているが、煩雑な遺伝子操作を必要とする点が問題となる[1]。

 Witteらは天然型タンパク質に対し、リジン側鎖アミノ基→アジド基への直接的な変換を行い、遺伝子操作なしでアジド基を基質及び位置選択的にタンパク質に導入する方法を開発した。

技術と技術のキモ

 基質及び位置特異性を出すために、強力なビオチンーアビジン相互作用を利用している。リガンド配向型化学[2]の応用例の一つと数えられる。

冒頭論文より引用

 van Hestらにより以前開発されたアジド化試薬Dtを活用している[3]。van Hestらの報告では、リジンの表面露出数が多いために残基間の選択性が出せていなかった。タンパク質混合物に対しての反応も、当然ながら無差別に起こってしまう。これをビオチンと繋げて解決した形になる。

主張の有効性検証

 アビジン、ストレプトアビジン、細胞表面に存在するビオチン結合タンパク(BioY)に選択的なアジド基への変換反応を行い、変換位置もビオチン認識部位の近くのみに限定することに成功した。下記の手法でそれを実証している。

①基質選択性の実証

ストレプトアビジン(Strp)とオボアルブミン(OVA)を混合し、それに対して反応を行った(DtBioでアジド化したのちクリック反応で蛍光物質を結合させて検出を行っている)。すると、DtBio試薬はストレプトアビジン選択的に反応していることが分かった(lane 1)。反応前に加熱し変性させる(lane 3)、もしくはビオチンと競合させる(lane 4, 5)と反応が進まないことから、ビオチン―アビジン相互作用が重要なことが分かる。

冒頭論文より引用

また、大腸菌の溶解物(タンパク質混合物)に対してもストレプトアビジン選択的に反応することがわかった。

②位置選択性の確認

DtBioとストレプトアビジンの結合様式から、アジド化部位(Dt)とLys121が近接する。そこで反応後のストレプトアビジンをトリプシン消化後、LC-MS/MSで解析したところ、Lys121にのみ反応が進行しており、他のリジン及びN末端のアミンは変換されていないこと、すなわち、反応は位置選択的に起こっていることが分かった。

③細胞表面タンパクへの反応

細胞表面に対しても標識反応をかけられることを示すべく、ビオチン結合性タンパクBioYを標的とした反応を行った。BioYは適切な位置にリジンを含まないため、遺伝子操作でN79K体へと変異させたものを細胞表面に発現させている。その結果、野生型BioYでは進行しない修飾反応が蛍光検出で観測された。

議論すべき点

  • ビオチンーアビジン相互作用は特別強いので調べやすいのだろうが、他のもっと弱いリガンド相互作用だとどうなるか。
  • 試薬のチューニングはどこまでできるか。今回リンカーの長さは検討されていない。BioYの実験では遺伝子操作でむしろ基質のほうを試薬に合わせている印象。他のタンパク質に対しても、リガンドとリンカー長の調節だけでどこまで対応できるか。

次に読むべき論文は?

  • リジンへの反応で位置選択性を出そうとしている例
  • リガンド配向型化学の総説[2]

参考文献

  1. Chin, J. W.; Santoro, S. W.; Martin, A. B.; King, D. S.; Wang, L.: Schultz, P. G. J. Am. Chem. Soc. 2002, 124, 9026. DOI: 10.1021/ja027007w
  2. Tsukiji, S.; Hamachi, I. Curr. Opin. Chem. Biol. 2014, 21, 136. doi:10.1016/j.cbpa.2014.07.012
  3. van Dongen, S. F. M.; Teeuwen, R. L. M.; Nallani, M.; van Berkel, S. S.; Cornelissen, J. J. L. M.; Nolte, R. J. M.; van Hest, J. C. M. Bioconjugate Chem. 2009, 20, 20. DOI: 10.1021/bc8004304
The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 天然物の生合成に関わる様々な酵素
  2. アントンパール 「Monowave300」: マイクロ波有機合成…
  3. メソポーラスシリカ(1)
  4. 標的指向、多様性指向合成を目指した反応
  5. 被引用回数の多い科学論文top100
  6. オープンアクセス論文が半数突破か
  7. ハイフン(-)の使い方
  8. 文具に凝るといふことを化学者もしてみむとてするなり : ② 「ポ…

コメント

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

注目情報

ピックアップ記事

  1. ナタデココ、次世代の薄型ディスプレー基板に活用
  2. リコペン / Lycopene
  3. 二次元物質の科学 :グラフェンなどの分子シートが生み出す新世界
  4. 第20回「転んだ方がベストと思える人生を」ー藤田 誠教授
  5. SDFって何?~化合物の表記法~
  6. 阪大・プリンストン大が発見、”高温”でも超伝導
  7. ケテンジチオアセタール化による一炭素増炭反応
  8. 化学Webギャラリー@Flickr 【Part5】
  9. アフマトヴィッチ反応 Achmatowicz Reaction
  10. 日本にノーベル賞が来る理由

注目記事

関連商品

注目情報

試薬検索:東京化成工業



最新記事

アビー・ドイル Abigail G. Doyle

アビゲイル・グットマン・ドイル (Abigail Gutmann Doyle、1980年xx月xx日…

金属キラル中心をもつ可視光レドックス不斉触媒

2014年、マールブルク大学・Eric Meggersらは、可視光レドックス触媒および金属キラル中心…

井上 将行 Masayuki Inoue

井上 将行 (いのうえ まさゆき、1971年2月14日-)は、日本の有機化学者である。東京大学大学院…

EUのナノマテリアル監視機関が公式サイトをオープン

新たに設立された、EU(欧州連合)のナノマテリアルを取り扱う機関が公式サイトをオープンしました。(ア…

近傍PCET戦略でアルコキシラジカルを生成する

2016年、プリンストン大学・Robert Knowlesらは、 可視光レドックス触媒を用いることで…

アルミニウム工業の黎明期の話 -Héroultと水力発電-

Gakushiです。これまでもケムステではアルミニウムについて様々な視点から取り上げてきました。1.…

Chem-Station Twitter

PAGE TOP