[スポンサーリンク]

化学者のつぶやき

スルホニルアミノ酸を含むペプチドフォルダマーの創製

南フロリダ大学・Jianfeng Caiらのグループは、L-アミノ酸とD-sulfono-γ-AApeptideの2:1繰り返し構造が特異な右巻きらせん構造を取ることを報告した。

“Right-Handed Helical Foldamers Consisting of De Novo D-AApeptides”
Teng, P.; Ma, N.; Cerrato, D. C.; She, F.; Odom, T.; Wang, X.; Ming, L.-J.; van der Vaart, A.; Wojtas, L.; Xu, H.*; Cai, J.* J. Am. Chem. Soc. 2017, 139, 7363–7369. DOI: 10.1021/jacs.7b03007 (冒頭図は論文より引用)

問題設定と解決した点

3次元構造を持つペプチドはタンパク質や膜分子に作用し、医薬・材料方面での利用が期待されている。中でもらせん状に折りたたまれたペプチドフォルダマーはこのような働きに加えて、膜内に入り込みチャネルとして機能できる可能性がある。

らせんを形作るペプチドの一つとして、L体・D体の両方のアミノ酸を交互に含むペプチドが挙げられる。そのような例としてはグラミシジンAやoligo-L-Val-D-Val peptideなどが知られるが報告例は少なく、らせん方向などの予測が困難であった。

著者らはらせん状ペプチドフォルダマーを新たに合成することでこのような化合物の知見を増やすとともに、生体分子模倣ペプチドの拡充を目指している。

技術・手法のキモ

著者らはペプチド核酸(PNA)から着想を得て設計されたAApeptide (N-acetylated-N-aminoethyl peptide)の3級アミド部分をスルホンアミドにする(Sulfono-AApeptide)ことで、アミドのシス/トランスによる影響をなくすとともに、立体障害を増大させてらせんを作りやすくする[1]ことを期待した。


主張の有効性検証

著者らはこれまでに、L-sulfono-γ-AApeptideのみのらせん[1]と α-アミノ酸とL-sulfono-γ-AA peptideの1:1複合のらせんフォルダマーを合成していた[2]。今回の論文ではα-アミノ酸:D-sulfono-γ-AApeptide=2:1でらせんフォルダマーを形成できることを示している。

具体的には、L-Ala、L-Phe、4-chlorobenzenesulfonyl-D-sulfono-γ-AA残基でペプチドを作り、単結晶X線構造解析を行うことで、冒頭図の様ならせん構造が作られていることを確認している。

誘導体の構造解析より、以下のことが明らかになっている。

  • 長いペプチドほどらせんを形成しやすい。
  • どの鎖長のものも右巻きである。半径2.6Å、一巻き4.5残基、5.1Å。π-へリックスに近い構造をとる。
  • 16-16-14の水素結合形成パターンを取る。
  • 側鎖は軸に対して外側を向いている。官能基の表面提示に有効な骨格である。
  • 各結合のねじれ角が特徴的。Ala部分はαへリックスに近くPhe部分はβシートに近い。D-sulfono-γ-AA残基部分はどれともつかない角度を取る。
  • トリフルオロエタノール中でのCDスペクトルより、温度・濃度変化にらせん構造は安定であることが示されている。
  • 分子動力学シミュレーションにより得られたらせん構造の妥当性が示されている。
  • スルホンアミドフェニル基上の置換基やα-アミノ酸部位を各々変更しても、らせん構造を取り得ることがNOE解析(CD3OH中)によって示唆されている。

議論すべき点

  • 官能基の一般性および安定性を兼ね備える、D-sulfono-γ-AA残基という特殊アミノ酸を含む、πへリックスという特異な構造を取る、側鎖は外を向いていてその向きに方向性がある、などの特性があるため、医薬分子や膜人工チャネル分子として組み込める可能性が十分あると考えられる。
  • 末端近傍のらせん構造は若干崩れやすい平衡にあるので改善は必要か。
  • D-sulfono-γ-AA残基は固相合成できる。Pd還元が必要なのが難である。

次に読むべき論文は?

  • Poly‐Aibペプチドでらせんを作り、膜に組み込んでイオン透過能を計測している論文[3]。鎖長によってイオン取り込み能が変わっている。膜に組み込むにはどのような特性がいるのか。N、C末端にどのようなキャップ構造を付ければよいか。膜貫通に必要な鎖長、チャネルを作る穴の大きさetc…などのヒントになるか?

参考文献

  1. Wu, H.; Qiao, Q.; Hu, Y.; Teng, P.; Gao, W.; Zuo, X.; Wojtas, L.; Larsen, R. W.; Ma, S.; Cai, J. Chem. Eur. J. 2015, 21, 2501. DOI: 10.1002/chem.201406112
  2. Wu, H.; Qiao, Q.; Teng, P.; Hu, Y.; Antoniadis, D.; Zuo, X.; Cai, J.  Org. Lett. 2015, 17, 3524. DOI: 10.1021/acs.orglett.5b01608
  3. Jones, J. E.; Diemer, V.; Adam, C.; Raftery, J.; Ruscoe, R. E.;  Sengel, J. T.; Wallace, M. I.; Bader, A.; Cockroft, S. L.; Clayden, J.;  Webb, S. J. J. Am. Chem. Soc. 2016, 138, 688. DOI: 10.1021/jacs.5b12057
The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 【書籍】英文ライティングの基本原則をおさらい:『The Elem…
  2. 禅問答のススメ ~非論理に向き合う~
  3. 2002年ノーベル化学賞『生体高分子の画期的分析手法の開発』
  4. 水素ガス/酸素ガスで光特性を繰り返し変化させる分子
  5. 炭素をつなげる王道反応:アルドール反応 (4)
  6. 目指せ!フェロモンでリア充生活
  7. Kindle Paperwhiteで自炊教科書を読んでみた
  8. マルチディスプレイを活用していますか?

コメント

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

注目情報

ピックアップ記事

  1. 卒論・修論にむけて〜わかりやすく伝わる文章を書こう!〜
  2. 亜鉛クロロフィル zinc chlorophyll
  3. 菌・カビを知る・防ぐ60の知恵―プロ直伝 防菌・防カビの新常識
  4. 2010年日本化学会各賞発表-進歩賞-
  5. ゴキブリをバイオ燃料電池、そしてセンサーに
  6. Jエナジーと三菱化が鹿島製油所内に石化製品生産設備を700億円で新設
  7. グレッグ・フー Gregory C. Fu
  8. ユーコミン酸 (eucomic acid)
  9. 2010年ノーベル化学賞予想ーケムステ版
  10. 吉田潤一 Jun-ichi Yoshida

注目記事

関連商品

注目情報

試薬検索:東京化成工業



注目情報

最新記事

バイエルスドルフという会社 ~NIVEA、8×4の生みの親~

Tshozoです。女装とかそういう趣味は無いのですが嫁さん(実在)に付き合って化粧品コーナを回ること…

化学系プレプリントサーバー「ChemRxiv」のβ版が運用開始

2017年8月14日、米国化学会(ACS)は、化学分野のプレプリントサーバー“ChemRxiv”のベ…

光触媒で人工光合成!二酸化炭素を効率的に資源化できる新触媒の開発

第115回のスポットライトリサーチは、東京工業大学 理学院 化学系 博士後期課程2年の栗木 亮さんに…

誰も教えてくれなかった 実験ノートの書き方 (研究を成功させるための秘訣)

概要悪い例とよい例を比較しながら,実験ノートを具体的にどう書けばよいのかを懇切丁寧に説明する…

神経変性疾患関連凝集タンパク質分解誘導剤の開発

第114回のスポットライトリサーチは、東京大学大学院薬学系研究科博士後期課程2年の山下 博子(やまし…

銀イオンクロマトグラフィー

以前、カラムクロマトグラフィーの吸引型手法の一つ、DCVCについてご紹介致しました。前回は操作に…

Chem-Station Twitter

PAGE TOP