[スポンサーリンク]

chemglossary

生物学的等価体 Bioisostere

医薬分子において生物学的に同じ役割を果たす他の部分構造を生物学的等価体(bioisostere)と呼ぶ[1, 2]。薬物の主要生物活性に影響を与えることなく、医薬に含まれる官能基を他のもので置換えることで、医薬特性を改善させる目的に有効となる考え方。


歴史的経緯

等価性(isosterism)という用語自体は1919年に物理学者のIrving Langmuirによって導入された。主に物理化学的観点からの関連性に主眼を置いた概念であった。

1932年にErlenmeyerらが報告した一連の詳細な研究から、分子の最外殻電子配置が同じであるものを等価体としてみなすことで、生物学上の問題に対して適用可能であることが示された。

1951にはHarris Friedmanが、物理化学的類似性によらず化合物に共通の生物学的性質があることを指す用語として”bioisostere”を導入した。

創薬化学の分野では、1979年にThornberが提唱したより幅広い定義、すなわち以下のものが一般的に受け入れられている。

「広く同様な生物的効果を示し、化学的及び物理的な類似性を有する官能基や分子」

具体例

立体的あるいは電子的性質が類似している官能基同士に生物活性類似性が認められる場合が多い。

たとえば医薬分子中のカルボキシル基はスルホンアミド、リン酸エステル、テトラゾールなどで置換えることができる。

bioisostere_1

元素単位で言えば、水素と立体的に類似しているが代謝抵抗性を持つ重水素、電気的性質を逆転させうるフッ素置換も生物学的等価体の例として捉えることができる。ケイ素原子も炭素の生物学的等価体として扱える[3]。

bioisostere_3

ペプチド結合は体内に存在するプロテアーゼなどで分解されやすいため、置換アルケンやヒドロキシエチルアミン構造などに置き換えることで、薬物動態に改善をもたらすことができる。この場合はとくにペプチドミメティクスと呼称される[4]。

bioisostere_2
最近ではオキセタン骨格がカルボニル基[5]、ビシクロ[1.1.1]ペンタン骨格がベンゼン環と置換可能(冒頭図)[6]であることなども示されつつある。

 

関連文献

  1. “Synopsis of Some Recent Tactical Application of Bioisosteres in Drug Design” Meanwell, N. A. J. Med. Chem. 2011, 54, 2529. DOI: 10.1021/jm1013693
  2. “Bioisosterism:  A Rational Approach in Drug Design” Patani, G. A.; LaVoie, E. J. Chem. Rev. 1996, 96, 3147. DOI: 10.1021/cr950066q
  3. “Organosilicon Molecules with Medicinal Applications” Franz, A. K.; Wilson, S. O. J. Med. Chem. 2013, 56, 388. DOI: 10.1021/jm3010114
  4.  “ペプチドミメティックによる創薬研究” 鳴海哲夫,玉村啓和, 生化学 2010, 82, 515. [PDF]
  5.  “Oxetanes as Versatile Elements in Drug Discovery and Synthesis” Burkhard, J. A.; Wuitschik, G.; Rogers-Evans, M.; Muller, K.; Carreira, E. M. Angew. Chem. Int. Ed. 2010, 49, 9052. DOI: 10.1002/anie.200907155
  6. “Application of the Bicyclo[1.1.1]pentane Motif as a Nonclassical Phenyl Ring Bioisostere in the Design of a Potent and Orally Active γ-Secretase Inhibitor” Stepan, A. F. et al. J. Med. Chem. 2012, 55, 3414. DOI: 10.1021/jm300094u

関連書籍

外部リンク

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ケージド化合物 (caged compound)
  2. 一重項分裂 singlet fission
  3. エピジェネティクス epigenetics
  4. ランタノイド / lanthanide
  5. 不斉触媒 ふせいしょくばい asymmetric catalys…
  6. N-ヘテロ環状カルベン / N-Heterocyclic Car…
  7. フラストレイティド・ルイスペア Frustrated Lewis…
  8. 試験管内選択法(SELEX法) / Systematic Evo…

コメント

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

注目情報

ピックアップ記事

  1. MOFはイオンのふるい~リチウム-硫黄電池への応用事例~
  2. 今週末は「科学の甲子園」観戦しよーぜ
  3. リンダウ会議に行ってきた②
  4. リチウム Lithium -リチウム電池から医薬品まで
  5. 自励振動ポリマーブラシ表面の創製
  6. サムスン先端研恐るべし -大面積プリンタブルグラフェンの合成-
  7. メリフィールド氏死去 ノーベル化学賞受賞者
  8. オーヴァーマン転位 Overman Rearrangement
  9. アスピリンの梗塞予防検証 慶応大、1万人臨床試験
  10. エノラートのα-アルキル化反応 α-Alkylation of Enolate

注目記事

関連商品

注目情報

試薬検索:東京化成工業



最新記事

元素紀行

先日、こんな記事を読みました。内容を一言で申せば、筆者の前川ヤスタカさんご自身の著書タイトルである「…

日本酸素記念館

大陽日酸の記念館で、創業時にドイツから輸入した酸素分離機が展示されていて、酸素分離機は、認定化学遺産…

室温でアルカンから水素を放出させる紫外光ハイブリッド触媒系

 プリンストン大学・Eric Sorensenらは、光駆動型水素原子移動(HAT)触媒-卑金属触媒ハ…

ケムステイブニングミキサー2017ー報告

先週の日本化学会年会に参加の方々お疲れ様でした。ケムステでは、例年通り「付設展示会ケムステキ…

芳香族カルボン酸をHAT触媒に応用する

ミュンスター大・Gloriusらは、可視光レドックス触媒を用いる位置選択的なC(sp3)-Hチオトリ…

日本薬学会第137年会  付設展示会ケムステキャンペーン

先日閉会した日本化学会年会。付設展示会では毎年恒例の付設展示会ケムステキャンペーンを行いました(Pa…

Chem-Station Twitter

PAGE TOP