[スポンサーリンク]

ケムステニュース

位相情報を含んだ波動関数の可視化に成功

アイキャッチ画像: “Detection of the shape of an electronic wave function with a six-fold symmetry” by NRC Ottawa 1

早稲田大学理工学術院の新倉弘倫(にいくらひろみち)教授は、カナダ国立研究機構 (National Research Council of Canada)、独マックス・ボルン研究所(Max Born Institute)と共同で、アト秒レーザー(高次高調波)によるネオン原子の光イオン化過程で生成した、ほぼ純粋なf-軌道電子(電子波動関数)の密度分布と、その位相を分けた波動関数に相当するイメージの直接測定に成功しました。またさらに、イオン化した電子波束がどのような位相と振幅を持つ波動関数から成っているかを同定する方法を開発しました。(引用:早稲田大学 2017年6月16日)2

早稲田大学教授の研究チームが、アト秒パルスレーザーにより放出された光電子の波動関数を直接可視化することに成功しました3。これは量子力学の発展に大きく寄与するものであるとともに、アト秒物理学(Attosecond Physics)が飛躍的な進歩を遂げていることを表します。

早稲田大学の公式サイトにて研究内容については詳しく記述されています2。アト秒物理学は近年発展が目覚ましい分野です。これからは、アト秒物理学技術を利用した化学の研究が行われていくのでしょうか。

研究背景

波動関数とは

アイザック・ニュートンらが構築した古典力学は、物質の挙動を記述する物理学の基礎学問でした。しかしながら19世紀末頃から、古典力学では説明することのできない、原子や電子に関連した実験結果が報告され、それらミクロな物質も全て含めた物質の挙動を記述する基礎学問が必要となりました。それが、エルヴィン・シュレーディンガーやマックス・ボルンらによって構築された量子力学です。

量子力学はシュレディンガー方程式を基礎方程式として展開されます。対象とする物質に関する情報は、その方程式の解である、ψ に内包されています。つまり、化学反応がどのように生じるのか、物質がどのような性質を有しているのか、などを根源的に理解するためには、それらの発生源となっている主な物質である電子の、 ψ について知ることが必要となります。 この  ψ が波動関数です。

シュレディンガー方程式(関数形式)

波動関数は複素関数であり、主に振幅と位相によって特徴付けられます。シュレディンガー方程式から関数を求め、その形状などを描像することは理論上可能でしたが、実験によって実際の波動関数を直接測定することは非常に困難です。また、波動関数そのものをどう解釈するべきであるのかという理解を助ける糸口という意味でも、直接的な測定は長らく求められ続けています4

アト秒物理学とは

アト(atto)とは、キロやミリ、ナノなどと同じ接頭辞の1つであり、10のマイナス18乗を表します。すなわちアト秒とは、10のマイナス18乗秒となります。小さな値すぎてなかなか想像ができないですね。

地球誕生から現在まで46億年と言われていますが、それを秒に直すと0.15 ×「10の18乗」秒です。もし46億年を1秒に縮めたとしたら、0.15秒が1アト秒になります。人間のまばたきは約0.3秒と言われていますので、人が1回まばたきしたとして、地球のこれまでの長い歴史を1秒と見なすと、2アト秒に相当します。アト秒の世界を観測することがいかにすごいかが分かりますね。(引用:THE PAGE 2016年10月1日)5

太陽系の一部として地球が生まれてから現代に至るまでを1秒とすると、1アト秒は私達が瞬きをする時間の半分程度となるわけです。どれほどに短い時間であるかイメージが湧くと思います。

アト秒物理学とは、そのような短い時間に生じる物理現象を取り扱う学問であり、2001年にアト秒レーザー発生が報告されてから急速に発展してきました。アト秒の世界では、原子や分子の振動などさえ遅すぎます。もっと質量の小さな電子などの運動そのものが観測できるのです。

関連図書

参考文献・関連記事

  1. Interplay of light and matter – A “perfect” attosecond experiment” | idw
  2. アト秒レーザーで位相を分けた電子波動関数の直接イメージングに成功 新規なアト電子テクノロジーの開発に期待』 | 早稲田大学ニュース
  3. “Coherent imaging of an attosecond electron wave packet”, D. M. Villeneuve, Paul Hockett, M. J. J. Vrakking, Hiromichi Niikura, Science 2017, 356, 6343, DOI: 10.1126/science.aam8393
  4. “Direct measurement of the quantum wavefunction”, Jeff S. Lundeen, Brandon Sutherland, Aabid Patel, Corey Stewart & Charles Bamber, Nature 2011, 474, 188-191, DOI: 10.1038/nature10120
  5. 2016年「物理学賞」は誰の手に? 日本科学未来館がノーベル賞予想』 | THE PAGE

関連リンク

The following two tabs change content below.
Eine

Eine

北京の大学院生。音楽が好きで、聴いたり、作ったり、演奏したりする。音楽ゲームも好き。研究では主にナノレベルの世界の解析をしている。言語や文化の壁と戦いながら、分子や電子たちの気持ちを考える日々。

関連記事

  1. オルト−トルイジンと発がんの関係
  2. 2021年、ムーアの法則が崩れる?
  3. 植物性油の再加熱によって毒物が発生
  4. 東芝やキヤノンが優位、微細加工技術の「ナノインプリント」
  5. 希少金属
  6. ESI-MSの開発者、John B. Fenn氏 逝去
  7. 武田薬、糖尿病治療剤「アクトス」の効能を追加申請
  8. 「先端触媒構造反応リアルタイム計測ビームライン」が竣工

コメント

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

注目情報

ピックアップ記事

  1. ウェブサイトのリニューアル
  2. 櫻井英樹 Hideki Sakurai
  3. サムライ化学者高峰譲吉「さくら、さくら」劇場鑑賞券プレゼント!
  4. O-アシルイソペプチド法 O-acylisopeptide Method
  5. ケミストリ・ソングス【Part1】
  6. 固体なのに動くシャトリング分子
  7. 祝100周年!ー同位体ー
  8. 犬の「肥満治療薬」を認可=米食品医薬品局
  9. ロジウム(II)アセタート (ダイマー):Rhodium(II) Acetate Dimer
  10. 小林 修 Shu Kobayashi

注目記事

関連商品

注目情報

試薬検索:東京化成工業



注目情報

最新記事

光触媒で人工光合成!二酸化炭素を効率的に資源化できる新触媒の開発

第115回のスポットライトリサーチは、東京工業大学 理学院 化学系 博士後期課程2年の栗木 亮さんに…

誰も教えてくれなかった 実験ノートの書き方 (研究を成功させるための秘訣)

概要悪い例とよい例を比較しながら,実験ノートを具体的にどう書けばよいのかを懇切丁寧に説明する…

神経変性疾患関連凝集タンパク質分解誘導剤の開発

第114回のスポットライトリサーチは、東京大学大学院薬学系研究科博士後期課程2年の山下 博子(やまし…

銀イオンクロマトグラフィー

以前、カラムクロマトグラフィーの吸引型手法の一つ、DCVCについてご紹介致しました。前回は操作に…

ニセ試薬のサプライチェーン

偽造試薬の一大市場となっている中国。その製造・供給ルートには、近所の印刷店など、予想だにしない人々ま…

どっちをつかう?:adequateとappropriate

日本人学者の論文で形容詞「adequate」と「appropriate」が混同されることはしばしば見…

Chem-Station Twitter

PAGE TOP