[スポンサーリンク]

ホスト分子

シアノスター Cyanostar

[スポンサーリンク]

シアノスター  (Cyanostar)[1]は、tert-butylbenzeneとacrylonitrileを構成単位とする環状分子である (図1)。

合成化学的に作られる大環状分子の一つである。2013年にAmar H. Floodらが合成した。合成でつくる環状分子の中では、比較的簡単かつ大量に合成できる (7 Step, 8.9 g, 52% total yield、下記参照)。環内孔は4.5 (モノマー)−5.2 (スタッキングダイマー) Å程度の電子不足な空間である。すなわち、アニオンなどの電子豊富な化合物を捕捉できる。この性質を利用し、超分子合成に展開されている。

図1. シアノスターの構造と軸不斉

 

構造

tert-butylbenzeneの3,5位と、acrylonitrileの2,3位とが、それぞれ交互に縮合した骨格を構成単位とし、5単位が円状に連なった環状分子である。分子の構造が星型に見えること、この分子の性質を決定づける官能基がシアノ基であったことから、シアノスターと名付けられた。

分子中心に五回回転軸をもつ。その軸に沿った軸不斉をもち、縮合方向ならびに環の巻く方向によってP体とM体が存在する。

結晶中では1対のスタッキング構造(スタッキングダイマー)をとっている。P体とM体は、全体の存在比が1:1である。しかしながら、スタッキングダイマーはPMMPPPMMのように複雑なダイマー構造をとっており、その存在確率は完全に等価ではない。(Whole-Molecule Disorder解析によって明らかにしている。詳しくは論文参照。)

環内孔は4.5 (モノマー)−5.2 (スタッキングダイマー) Å程度の大きさをもつ。超分子で用いられる環状分子と比較すると、α-シクロデキストリンと同じ程度の大きさである。

具体的な合成法

5-tert-butyl-isophthalicacidを還元してジオール化し、一方のヒドロキシル基をブロモ化、続いてシアノ化する。残りのヒドロキシル基をPCC酸化でアルデヒド化することでモノマーを得る (図2)。そのモノマーを、炭酸セシウム存在下でKnoevenagel縮合させて、シアノスターを得る。

全7段階を非常に簡単な反応でのみで合成でき、総収率は52%である。最大収量は8.9 gである。合成する環状分子の収率としては高い収率・収量である。

最終段階の環化収率が高い理由は、炭酸イオン(CO32-)のまわりに電子不足なモノマーが集り、それを鋳型として縮合反応が起きたからである。(テンプレート効果

図2. シアノスターの合成法

 

性質

環内孔は電子密度が低い。また、環内孔に向いた水素は、水素結合能が非常に高い。これらはシアノ基によって電子が引かれているためである。実際にNMRスペクトルを測定すると、環内孔のプロトンを低磁場領域に観測できる。シアノスターの構成単位のDFT計算と静電ポテンシャル計算によっても、この事実が支持されている。

図3. シアノスターとアニオン類の錯形成: (a) 模式図、(b) アニオンの大きさと会合定数の関係 (論文[1]より転載)

開発者のFloodらは、シアノスターと様々なアニオンとの相互作用を検討した。シアノスターとアニオンで1:1もしくは2:1の錯体を作ることを明らかにした。1:1錯体の会合定数はKa = 108-1012であった。環内孔とのサイズが最も適合するPF6とは特に強く相互作用した。すなわち、シアノスターは5Å程度のアニオンと最もよく相互作用できる環分子である。

 

参考文献

  1. Lee, A.; Chen, C. H.; Flood. A. H. Nature Chem. 2013, 5, 704-710, DOI:10.1038/nchem.166.

 

Trogery12

投稿者の記事一覧

博士(工学)。九州でポスドク中。専門は有機金属化学、超分子合成、反応開発。趣味は散策。興味は散漫。つれづれなるままにつらつらと書いていきます。よろしくお願いします。

関連記事

  1. ペラミビル / Peramivir
  2. シコニン
  3. サラシノール/Salacinol
  4. キニーネ きにーね quinine
  5. ボンビコール /bombykol
  6. クルクミン /curcumin
  7. 酢酸ビニル (vinyl acetate)
  8. ミック因子 (Myc factor)

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. d8 Cu(III) の謎 –配位子場逆転–
  2. 第36回ケムステVシンポ「光化学最前線2023」を開催します!
  3. 海外で働いている僕の体験談
  4. ADC薬 応用編:捨てられたきた天然物は宝の山?・タンパクも有機化学の領域に!
  5. 植物毒素の全合成と細胞死におけるオルガネラの現象発見
  6. Utilization of Spectral Data for Materials Informatics ー Feature Extraction and Analysis ー(スペクトルデータのマテリアルズ・インフォマティクスへの活用 ー 特徴量抽出と解析 ー)
  7. シュガフ脱離 Chugaev Elimination
  8. 日本化学会第86春季年会(2006)
  9. トーマス・レクタ Thomas Lectka
  10. Reaxys Ph.D Prize 2014受賞者決定!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年7月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

ニキビ治療薬の成分が発がん性物質に変化?検査会社が注意喚起

2024年3月7日、ブルームバーグ・ニュース及び Yahoo! ニュースに以下の…

ガラスのように透明で曲げられるエアロゲル ―高性能透明断熱材として期待―

第603回のスポットライトリサーチは、ティエムファクトリ株式会社の上岡 良太(うえおか りょうた)さ…

有機合成化学協会誌2024年3月号:遠隔位電子チューニング・含窒素芳香族化合物・ジベンゾクリセン・ロタキサン・近赤外光材料

有機合成化学協会が発行する有機合成化学協会誌、2024年3月号がオンライン公開されています。…

日本化学会 第104春季年会 付設展示会ケムステキャンペーン Part3

日本化学会年会の付設展示会に出展する企業とのコラボです。第一弾・第二弾につづいて…

ペロブスカイト太陽電池の学理と技術: カーボンニュートラルを担う国産グリーンテクノロジー (CSJカレントレビュー: 48)

(さらに…)…

日本化学会 第104春季年会 付設展示会ケムステキャンペーン Part2

前回の第一弾に続いて第二弾。日本化学会年会の付設展示会に出展する企業との…

CIPイノベーション共創プログラム「世界に躍進する創薬・バイオベンチャーの新たな戦略」

日本化学会第104春季年会(2024)で開催されるシンポジウムの一つに、CIPセッション「世界に躍進…

日本化学会 第104春季年会 付設展示会ケムステキャンペーン Part1

今年も始まりました日本化学会春季年会。対面で復活して2年めですね。今年は…

マテリアルズ・インフォマティクスの推進成功事例 -なぜあの企業は最短でMI推進を成功させたのか?-

開催日:2024/03/21 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

分子のねじれの強さを調節して分子運動を制御する

第602回のスポットライトリサーチは、東京大学大学院理学系研究科 塩谷研究室の中島 朋紀(なかじま …

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP