[スポンサーリンク]

天然物

亜鉛クロロフィル zinc chlorophyll

 

今わたしたちが吸っている酸素ガスは、みな植物が光合成で作り出したものです。植物が光合成するときに活躍する緑色のクロロフィルには、みな金属元素のマグネシウムが結合しています。しかし、酸性下に生育する光合成細菌から、ただひとつの例外が発見されています。亜鉛が結合した驚愕のクロロフィルを紹介します。

 

酸性下で壊れない不思議なクロロフィルの正体

ホウレンソウを茹でたときのように水で煮出すなり、小学校の理科の実験のように温めたエタノールにひたすなりすれば、植物から緑色の成分がしみ出してきます。この緑色は、ご存じクロロフィルによるものです。

クロロフィルが溶けたこの緑色の溶液を、十分量の酢酸と混合すると、緑色は数分で消えます(実験としては数滴の塩酸を垂らした方がすぐ確実に消えるため分かりやすいと思います)クロロフィルは酸に弱く、結合していたマグネシウムが外れてクロロフィルが壊れ、溶液の緑色が消えていったのです。

しかしながら、通常のクロロフィルが分解されてしまうほど酸性度の高い特別な水域にも、光合成をする生き物が生息していました。うす赤い藻のような微生物が酸性下の環境から見つかります。この微生物は光合成細菌の1種(Acidiphilium rubrum )でした。そこで、酸性下でもなぜクロロフィルが機能を保ったまま光合成を行えるのか、光合成細菌に含まれる成分を分析したところ、マグネシウムとは別の金属元素が配位した光合成色素が見つかりました。なんとマグネシウムではなく、亜鉛がクロロフィルに結合していたのです。

抽出した亜鉛クロロフィルは紫色をしていました。調べてみると、予想通り、マグネシウムのものよりも優れた耐酸性を示しました。そのため、酸性下でも分解されにくい亜鉛クロロフィルは、光合成細菌が酸性下の環境に適応した結果であると考えられています。

 

植物の分類と光合成のシステム

亜鉛が結合したタイプのクロロフィルがどう驚愕なのか、高校の生物学の教科書に毛が生えた程度ですが、植物の世界を俯瞰して、もう一度その意味を考え直してみましょう。

通常、光合成では、二酸化炭素分子と水分子から、酸素分子とを作り出します。このために必要な光エネルギーを吸収する役割を持った物質が、クロロフィル葉緑素)です。

わたしたちが身近に見る植物のなかまでは、細胞の中に葉緑体と呼ばれる膜で区画された細胞小器官(organelle)があります。クロロフィルは膜で区画されたこの葉緑体の中にあります。種子植物のみならず、シダ植物のなかまや、コケ植物のなかまでも、膜で区画された葉緑体を拠点に光合成は行われます。さらに、緑藻褐藻のなかまのように細胞核がある藻類もみな同様に、葉緑体で光合成しています。

GREEN000512.PNG



核膜で包まれた細胞核がある生き物を真核生物と呼ぶ一方、核膜で包まれた細胞核がない生き物を原核生物と呼びます。原核生物のなかまには、膜で区画された細胞小器官はありません。原核生物のうち、シアノバクテリア(藍藻)と光合成細菌が、光合成生物に該当します。このふたつのなかまには、膜で区画された葉緑体はありません。しかし、細胞内にクロロフィルは持っています。

GREEN000513.PNG

光合成生物の分類

わたしたちが生活する上で身近に目にする植物たちと同じく、シアノバクテリアは酸素を発生するタイプの光合成をします。 これに対して、光合成細菌は、もっぱら 硫化水素を用いて硫黄を発生するタイプの光合成をします。光合成細菌が持つ光合成色素は、バクテリオクロロフィルとも呼ばれますが、化学構造はクロロフィルとほとんど同じで、メインのポルフィリン構造は共通です。通常のクロロフィルは、中央にマグネシウムを冠しています。

GREEN000514.PNG

光合成細菌はおよそ硫化水素を使用

そして、光合成細菌にせよ、シアノバクテリアにせよ、種子植物にせよ、みなクロロフィルの中心には、金属元素のマグネシウムがはまっています。

植物の土壌改良剤に、苦土と呼ばれるものがあります。この成分はマグネシウム塩です。ときには肥料として与えなければならないほど、マグネシウムは光合成をする生き物にとって重要な元素です。農作物の場合、土壌のマグネシウムが欠乏すると、葉が老いて黄色くしおれやすくなります。

GREEN000515.PNG

特別な例外を除きすべてマグネシウムが活躍

わたしたちが食べるものはそもそも植物に由来したものです。野菜や穀物だけではなく、肉類であってもめぐりめぐって植物を食べた動物に由来したものです。また、食品だけではなく、わたしたちはエネルギーも多くを植物に依存しています。燃料の薪木はもちろんのこと、石炭をはじめ化石燃料の炭素源は、もともと太古の植物に由来しています。亜鉛クロロフィルの発見は、その根幹となる光合成の最も重要な中心で、特殊な例外を見出したものでした。

 

光合成生物の進化にはじまり、地球外生命体の可能性、はたまた色素増感タイプの太陽電池まで、亜鉛クロロフィルがわたしたちに語りかけてくるものは多くあります。生命は進化の中で、試しうるほとんどすべての可能性を模索してきました。数十億年にわたる膨大な試行錯誤(trial and error)の蓄積が、現在の地球でわたしたちのまわりに生きているのです。科学技術が発展を初めてからの人類の歴史はわずか。その分、自然に学ぶことはまだまだ多くあるでしょう。

 

参考文献

[1] “Discovery of Natural Photosynthesis using Zn-Containing Bacteriochlorophyll in an Aerobic Bacterium Acidiphilium rubrumPlant Cell Physiology 1996

[2] 新規光合成色素(特開平9-100419

[3] “Prokaryotic photosynthesis and phototrophy illuminatedTrends in Plant Science 2006 Review

The following two tabs change content below.
Green

Green

静岡で化学を教えています。よろしくお願いします。
Green

最新記事 by Green (全て見る)

関連記事

  1. ギ酸 (formic acid)
  2. メバスタチン /Mevastatin
  3. マツタケオール mushroom alcohol
  4. ペラミビル / Peramivir
  5. ヘロナミドA Heronamide A
  6. セレノネイン selenoneine
  7. ビタミンB12 /vitamin B12
  8. ブレオマイシン /Bleomycin

コメント

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

注目情報

ピックアップ記事

  1. ポリエチレンなど合成樹脂、値上げ浸透
  2. Cyclopropanes in Organic Synthesis
  3. UV-Visスペクトルの楽しみ方
  4. キャリー・マリス Kary Banks Mullis
  5. パール・クノール フラン合成 Paal-Knorr Furan Synthesis
  6. フレーザー・ストッダート James Fraser Stoddart
  7. エリック・メガース Eric Meggers
  8. 光触媒が可能にする新規C-H/N-Hカップリング
  9. 『Ph.D.』の起源をちょっと調べてみました① 概要編
  10. ウギ反応 Ugi Reaction

注目記事

関連商品

注目情報

試薬検索:東京化成工業



注目情報

最新記事

芳香族ニトロ化合物のクロスカップリング反応

第116回のスポットライトリサーチは、京都大学大学院工学研究科 材料化学専攻 有機材料化学講座(中尾…

バイエルスドルフという会社 ~NIVEA、8×4の生みの親~

Tshozoです。女装とかそういう趣味は無いのですが嫁さん(実在)に付き合って化粧品コーナを回ること…

化学系プレプリントサーバー「ChemRxiv」のβ版が運用開始

2017年8月14日、米国化学会(ACS)は、化学分野のプレプリントサーバー“ChemRxiv”のベ…

光触媒で人工光合成!二酸化炭素を効率的に資源化できる新触媒の開発

第115回のスポットライトリサーチは、東京工業大学 理学院 化学系 博士後期課程2年の栗木 亮さんに…

誰も教えてくれなかった 実験ノートの書き方 (研究を成功させるための秘訣)

概要悪い例とよい例を比較しながら,実験ノートを具体的にどう書けばよいのかを懇切丁寧に説明する…

神経変性疾患関連凝集タンパク質分解誘導剤の開発

第114回のスポットライトリサーチは、東京大学大学院薬学系研究科博士後期課程2年の山下 博子(やまし…

Chem-Station Twitter

PAGE TOP