[スポンサーリンク]

ケムステしごと

【太陽HD】世界初!セルロースナノファイバー複合電子材料の研究

[スポンサーリンク]

セルロースナノファイバー(CNF)は木材などに含まれる植物繊維をナノサイズまでほぐすことで得られるナノ繊維のことです。CNFは鉄の5分の1程度の軽さでありながら、その7~8倍の強度を有する、ガラスと同程度の低い熱膨張率を示すなど優れた特性を有しています。そのため、樹脂の強化材料として大きな注目を集めています。また、CNFの大きな特徴として、少量の添加で大きな物性の改善が期待できる点が挙げられます(Fig. 1)。

Fig. 1 フィラー添加による熱膨張率変化の理論値

 

私たちはCNFのこれらの特徴に着目し、樹脂にCNFをフィラーとして添加することで、少量の添加によって低熱膨張化を実現することが出来ることを見出しました。

プリント配線板などの電子部品に使用されている絶縁性樹脂材料は、配線や半導体に用いられている銅やシリコンなどと比べて、熱膨張率が非常に大きいため、回路に熱が加わると基板に反りが生じることが問題となります。そのため、絶縁性樹脂材料には無機材料と同程度まで熱膨張率を低くすることが求められています。

一般に、絶縁性樹脂材料を低熱膨張化する手法としては、熱膨張率の低い無機材料をフィラーとして添加することが知られています。しかし、フィラーを高濃度で添加すると、樹脂本来の柔軟性が失われてしまい、機械強度が低下してしまいます。そのため、低熱膨張率と高機械強度の両立が課題となっています。

この課題を解決するために私たちは新たなフィラーとしてCNFに着目し、検討を進めていきました。

CNFは分子中に水酸基を多く含んでいることから、一般的には親水性を示すため、疎水性の樹脂と相性が悪く、均一に分散することが出来ません。そのため、疎水性の修飾基を導入し、CNFを疎水化することが必要になります。疎水化を行うことで、樹脂中においてもCNFを均一に分散させることが可能となります(Fig. 2)。

Fig. 2 CNFの疎水化イメージ

この疎水化CNFをエポキシ樹脂に添加すると、約3 vol%という少ない添加量にも関わらず、室温域で5~7 ppm/Kの低熱膨張化を実現することが出来ます(Fig. 3 CNF添加①)。

さらに、私たちはCNFの特性を十分に引き出すことが出来れば、さらなる低熱膨張化を実現できるはずだと考え、CNFの複合化に適した樹脂系の探索を行いました。その結果、エポキシ樹脂の硬化系を最適化することによって、従来と比較しても非常に大きな低熱膨張化を実現することが出来ました。この樹脂系では、熱膨張率が銅とほぼ同程度であるため、銅基板上に成膜した際の反りを抑制することができます(Fig. 3 CNF添加②)。

Fig. 3 CNF添加による熱膨張率変化と基板の反り

私たちは、CNFにはまだまだ大きな可能性が秘められていると考えています。その特性を最大限に引き出し、さらなる物性の向上を目指して、これからも挑戦を続けていきます。

この製品に関するお問い合わせ

太陽ホールディングス株式会社

本社:東京都豊島区西池袋1丁目11番1号 メトロポリタンプラザビル16階

お問い合わせは、メールにてお願いいたします。
recruit@taiyo-hd.co.jp

関連情報

webmaster

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. クラリベイト・アナリティクスが「引用栄誉賞2020」を発表!
  2. 科学史上最悪のスキャンダル?! “Climatega…
  3. 「世界最小の元素周期表」が登場!?
  4. “匂いのゴジラ”の無効化
  5. TBSの「未来の起源」が熱い!
  6. 単純なアリルアミンから複雑なアリルアミンをつくる
  7. 磁力で生体触媒反応を制御する
  8. ブラウザからの構造式検索で研究を加速しよう

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ジェイムス・ブル エナンチオ過剰率決定法 James-Bull Method for Determination of Enantiomeric Excess
  2. ジュリアス・レベック Julius Rebek, Jr.
  3. 化学研究ライフハック:縦置きマルチディスプレイに挑戦!
  4. 第43回―「均質ナノ粒子の合成と生命医学・触媒への応用」Taeghwan Hyeon教授
  5. 有望ヘリウム田を発見!? ヘリウム不足解消への希望
  6. 私達の時間スケールでみても、ガラスは固体ではなかった − 7年前に分からなかった問題を解決 −
  7. ジイミド還元 Diimide Reduction
  8. 逆電子要請型DAでレポーター分子を導入する
  9. edXで京都大学の無料講義配信が始まる!
  10. それは夢から始まったーベンゼンの構造提唱から150年

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

不溶性アリールハライドの固体クロスカップリング反応

第305回のスポットライトリサーチは、北海道大学大学院工学研究院 (伊藤研究室)・瀬尾 珠恵さんにお…

化学のためのPythonによるデータ解析・機械学習入門

hodaです。今回は筆者の勉強用に読んだ機械学習関連の書籍を紹介します。概要本書は、…

アカデミックから民間企業へ転職について考えてみる 第三回

カデミックから民間企業へ転職した場合、入社後にギャップを感じる人が少なからずいます。もちろん、どんな…

第142回―「『理想の有機合成』を目指した反応開発と合成研究」山口潤一郎 教授

第142回の化学者インタビューは日本から、皆さんご存じ、山口潤一郎教授の登場です。名古屋大学理学部化…

【書籍】ゼロからの最速理解 プラスチック材料化学

今月発売された『ゼロからの最速理解 プラスチック材料化学』(佐々木 健夫 著,コロナ社)という書籍を…

重水は甘い!?

同位体はある元素、すなわち同一の原子番号をもつ原子核において、中性子数の異なる核種のことをいいますね…

人物でよみとく化学

概要化学の歴史をつくった約50人を収録。高校・大学の化学の勉強に役立つ16テーマをあつかい、…

金属ナトリウム分散体(SD Super Fine ™)

概要金属ナトリウム分散体(SD Super Fine ™)は、金属ナトリウムの微粒…

Chem-Station Twitter

PAGE TOP