[スポンサーリンク]

一般的な話題

その化合物、信じて大丈夫ですか? 〜創薬におけるワルいヤツら〜

[スポンサーリンク]

はじめまして。薬学部で創薬化学を研究する傍ら、薬局薬剤師としても活動している DAICHAN と申します。

よろしくお願いします。

さて、創薬の現場において、ハイスループットスクリーニング (HTS) は最早当たり前の技術となりました。

本邦でも国立大学を中心に化合物ライブラリの整備が進められ、アカデミアの研究者も手軽に HTS を行えるようになっています。

しかし、企業の所有する非開示のライブラリに比べ、アカデミアのオープンなライブラリは充分に洗練されているとは言えない状態です。そういったライブラリを用いる場合や、そもそもライブラリを使用せず独断で選択した化合物群をもとにスクリーニングを行う場合は、スクリーニング系の正しさやヒット化合物の妥当性を隅々までしっかりとバリデーションしなければいけません。

PAINSとは

今回紹介する “PAINS” は、スクリーニングやフェノタイプアッセイなどにおいて、偽陽性などの問題を起こしやすい”ワルいヤツら” のことです。

PAINSは “pan-assay interference compounds” のアクロニムで、さまざまなアッセイ系において真の薬理活性化合物 (標的を選択的に阻害または活性化する) であるかのように振る舞いながら、実際はただ非選択的な反応性を示す化合物を意味します。

いわゆる frequent hitter の中でも、言ってみれば「ゴミ」扱いされることの多い化合物たちです。

残念なことに、得てしてアカデミアの研究者には、こういった PAINS の使用によって得られたデータを真のヒットと信じ(あるいは偽陽性の可能性を「あえて」述べずに) 、論文発表してしまうことが散見されます。

2014年の Nature に寄せられた PAINS の提唱者である Baell らの COMMENT には、非常にキャッチーな “PAINS” が描かれています[1]

図1  PAINSのイメージ (文献[1]より引用)

どいつもこいつも実にワルそうです。

この顔ぶれの中には、ケムステの記事でも過去に何度か取り上げられたクルクミン (黄色いシャツのおっさん)も並んでいます。

2017年に発表された論文では、クルクミンに明確な治療効果は無いと結論付けられていました (参考: ウコンの成分「クルクミン」自体に効果はない?)。

クルクミンは、①そのものが蛍光を示すことから蛍光発光を用いたアッセイで偽陽性となりやすいこと、②生体分子に対する covalent binder (共有結合性分子) としての性質を有すること、③生体膜を破壊する可能性があることなど、さまざまな面からその問題点が指摘されています。

また、ロダニンも有名な PAINS の一つです。Ene-ロダニン骨格は糖尿病性末梢神経障害治療薬のエパルレスタットにも含まれる構造ですが、いわゆる Michael アクセプター型の covalent binder であり、その効果を疑問視する声もあります。

Michael アクセプターはさまざまな生体分子を修飾するほか、転写因子 Nrf2 の活性化を促すことで広範な生理活性を示す場合があります。この他にも、レドックスサイクルを乱す・アッセイ系に含まれる金属をトラップする・化学的に不安定、な化合物が PAINS として挙げられています[1]

アカデミアで用いられるライブラリ化合物には、5~12% 程度の割合で PAINS が含まれると警告されています[1]。アカデミア所有のライブラリはサプライヤーから購入可能な試薬を中心に構成されていることが原因の一つと考えられるそうです。サプライヤーが悪いのではなく、ライブラリに入れる方の目利きに問題があると言えるでしょう。

もうやめたら?そのポジコン使うのは

Natureのコメント[1]では、クルクミン・エピガロカテキンガレート (EGCG)・ゲニステイン・レスベラトロール (図2) などは、プロミスカス (無差別) な活性を有するにも関わらず、さまざまなアッセイのポジティブコントロールとして頻繁に用いられていると指摘されています。

確かに筆者の研究室でも、その昔レスベラトロールをポジコンに使っていました…(反省)。ぺったんこな分子はあっちこっちに挟まったりベタベタくっついたりするので、兎にも角にも阻害!阻害!って感じなんですよね…。

もちろんフレンチパラドックスの例で挙げられるようなレスベラトロールの抗酸化活性を否定することはありません。ただ、特に選択的な生理活性を持っているわけではどうやら無さそうなので、大事な実験のポジコンに使うのは今すぐ止めたほうがいいでしょう

しかし、これらの天然物やその誘導体の生理活性に関する論文は2020年現在も頻繁に投稿されています。使い古された天然物の創薬シーズとしての利用価値は、皆無に等しいのではないでしょうか。

 

図2  ポジコンとして頻用される天然物の構造

PAINS が医薬品リード化合物とならなくても、ツール化合物として有用だと結論付ける論文も多数あります。しかし、ツール化合物こそ薬理学的な正確さを示さなければならないとも警告されています[2]

これは私信で PAINS の話とはやや異なりますが、ツール化合物として市販されている数mgウン万円の試薬には、メディシナルケミストから見ると相当怪しいものも含まれています。もちろん培養細胞系レベルではそれなりの効果を示すかもしれませんが、in vivo 試験に用いる場合、代謝でボロボロになったり、そもそもバイオアベイラビリティが壊滅的だったり…。得てしてアカデミアのバイオロジストはその事実を知らず、貴重な資金とリソースをバッタもんに費やし、「アレ?なんで効かないんだろ?」という沼に陥りがちな気がします (偏見ですが)。

さて、PAINS となり得る構造の例は次々と細かく報告されています。ベテランのメディシナルケミストでもその全てを網羅するのは厳しいでしょうが、少なくとも Nature の図にある「悪いヤツら」の構造は覚えておくと良さそうです。余計なリソースを費やす危険性を減らすことができるでしょう。

また PubChem などにも PAINS に関する情報が載っていますので、より詳しい例を知りたい方は検索してみてください。

NO PAINS, NO GAINS ?

最後に、PAINS をヒット化合物としながらもデッドエンドを回避した例を紹介します[2,3]

キノン類似構造 (キノイド) は最も頻繁に現れ、かつ問題となりやすい PAINS の例です。ポリ(ADP-リボース)グリコヒドロラーゼを標的とし、1,400,000 化合物を用いた HTS から唯一得られたヒット化合物がキノイド化合物 でした。著者らは精細なヒットバリデーションと in silico での scafflod hopping (ざっくり言えば基本骨格を思い切って変えちゃう手法) を元に構造活性相関を取得し、最終的に PAINS 構造を含まない化合物 を見出しています (図3)。

非常に稀ながら、「ゴミ」かもしれないヒット化合物を優等生に育て上げた好例と言えるでしょう。

図3  Scaffold hopping によりPAINSを脱却した活性化合物の例

「アカデミアのメドケムは役に立たない」

悲しいかな、アカデミア創薬を推進する立場の筆者にも納得の一言です。

とりわけアカデミアで創薬を謳う研究者は、目先の活性ばかりに注目しがちで、化合物のケミカルな性質による偽陽性の可能性を考慮していない場合が多いです。また、論文を査読する側にPAINSに関する知識が無いことも問題となります。

少なくともメディシナルケミストを目指す研究者の卵には、PAINSという悪いヤツらの存在を知っておいていただきたいです

最近は、東大創薬機構の先生方を中心に執筆・翻訳されたメドケムの教科書も発売されています。これまでにない実践的な切り口の教科書であり、アカデミア創薬を志す方には是非とも一読しておいていただきたいと思います。

初の記事執筆で至らない面が多々あると思いますが、いかがでしたでしょうか (ドキドキ)。

今後もこれまでにケムステで割と少なかった「創薬」と「育薬」を化学にフィーチャーし発信していければと思います。

参考文献

  1. Baell, J. B.; Walters, M. A, Nature ,2014. 513. 481. DOI: 10.1038/513481a
  2. Baell, J. B.; Nissink, J. W. M, ACS Chem. Biol, 2018, 13, 36. DOI: 10.1021/acschembio.7b00903
  3. James, D. I.; Sminth, K. M.; Jordan, A. M.; Fairweather, E. E.; Griffiths, L. A.; Hamilton, N. S.; Hitchin, J. R.; Hutton, C. P.; Jones, S.; Kelly, P.; McGonagle, A. E.; Small, H.; Stowell, A. I.; Tucker, J.; Waddell, I. D.; Waszkowycz, B.; Ogilvie, D. J. ACS Chem. Biol, 2016, 3179. DOI: 10.1021/acschembio.6b00609

関連記事・リンク

DAICHAN

投稿者の記事一覧

創薬化学者と薬局薬剤師の二足の草鞋を履きこなす、四年制薬学科の生き残り。
薬を「創る」と「使う」の双方からサイエンスに向き合っています。
しかし趣味は魏志倭人伝の解釈と北方民族の古代史という、あからさまな文系人間。
どこへ向かうかはfurther research is needed.

関連記事

  1. 第54回天然有機化合物討論会
  2. 「Python in Excel」が機能リリースされたときのメリ…
  3. 反応化学の活躍できる場を広げたい!【ケムステ×Hey!Labo …
  4. 今年も出ます!!サイエンスアゴラ2015
  5. 拡張Pummerer反応による簡便な直接ビアリール合成法
  6. NMRのプローブと測定(Bruker編)
  7. 【速報】2015年ノーベル化学賞は「DNA修復機構の解明」に!
  8. 【追悼企画】不斉酸化反応のフロンティアー香月 勗

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ボールドウィン則 Baldwin’s Rule
  2. シス優先的プリンス反応でsemisynthesis!abeo-ステロイド類の半合成
  3. 糖鎖を化学的に挿入して糖タンパク質を自在に精密合成
  4. マーティン・オストライヒ Martin Oestreich
  5. エンテロシン Enterocin
  6. 第167回―「バイオ原料の活用を目指した重合法の開発」John Spevacek博士
  7. 高純度フッ化水素酸のあれこれまとめ その1
  8. 第15回光学活性シンポジウム
  9. コニア エン反応 Conia–Ene Reaction
  10. 創薬化学における「フッ素のダークサイド」

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年10月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

【十全化学】核酸医薬のGMP製造への挑戦

「核酸医薬」と聞いて、真っ先に思い起こすのは、COVID-19に対するmRNAワ…

十全化学株式会社ってどんな会社?

私たち十全化学は、医薬品の有効成分である原薬及び重要中間体の製造受託を担っている…

化学者と不妊治療

これは理系の夫視点で書いた、私たち夫婦の不妊治療の体験談です。ケムステ読者で不妊に悩まれている方の参…

リボフラビンを活用した光触媒製品の開発

ビタミン系光触媒ジェンタミン®は、リボフラビン(ビタミンB2)を活用した光触媒で…

紅麹を含むサプリメントで重篤な健康被害、原因物質の特定急ぐ

健康食品 (機能性表示食品) に関する重大ニュースが報じられました。血中コレステ…

ユシロ化学工業ってどんな会社?

1944年の創業から培った技術力と信頼で、こっそりセカイを変える化学屋さん。ユシロ化学の事業内容…

日本薬学会第144年会付設展示会ケムステキャンペーン

日本化学会の年会も終わりましたね。付設展示会キャンペーンもケムステイブニングミキ…

ペプチドのN末端でのピンポイント二重修飾反応を開発!

第 605回のスポットライトリサーチは、中央大学大学院 理工学研究科 応用化学専…

材料・製品開発組織における科学的考察の風土のつくりかた ー マテリアルズ・インフォマティクスを活用し最大限の成果を得るための筋の良いテーマとは ー

開催日:2024/03/27 申込みはこちら■開催概要材料開発を取り巻く競争や環境が激し…

石谷教授最終講義「人工光合成を目指して」を聴講してみた

bergです。この度は2024年3月9日(土)に東京工業大学 大岡山キャンパスにて開催された石谷教授…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP