[スポンサーリンク]

化学者のつぶやき

可視光でスイッチON!C(sp3)–Hにヨウ素をシャトル!

[スポンサーリンク]

不活性なC(sp3)–H結合のヨウ素化反応が報告された。シャトル触媒と光励起Pdの概念を融合させ、ヨードアレーンをヨウ素供与体および水素原子移動(HAT)試薬として活用したことが鍵となる。

C(sp3)–H結合のヨウ素化

有機化合物のC(sp3)–H結合の直接的官能基化法は、合成経路を簡略化するための有効な戦略として重要である[1]。なかでも、C(sp3)–H結合の水素原子移動(HAT)を経て生成するアルキルラジカルを中間体としたクロロ化やブロモ化反応は、古くから工業的にも広く利用されおり[2]、近年の光反応やハロゲン化剤の開発によって、より温和な反応条件も開発されている[3]。一方で、ヨウ素化反応は熱力学的に不利なため、適用例が限られている[4]。さらに、既存の単純アルカンのヨウ素化反応は非触媒的または過酷な条件を必要とする点も課題である(図 1A)[5]。このような背景のもと、合成中間体として高い汎用性を有するアルキルヨウ化物を、効率的に構築するための触媒的かつ穏和なC(sp3)–H結合のヨウ素化反応の開発が求められている。

著者らは以前、ヨードアレーンをヨウ素供与体として用いるシャトル触媒型ヨウ化物移動反応を開発した[6]。ヨードアレーンのC(sp2)–I結合がPdに二電子酸化的付加することを起点として、ヨウ素がアシルクロリド基やC(sp2)–H結合と交換する(図 1B)。一方で近年、可視光で励起された0価のPdが、アリールハライドを一電子経路で活性化し、アリールラジカルの生成やハロゲン原子移動(XAT)を触媒することが示された(図 1C)[7]

今回、著者らはこれらの知見を基に、光駆動型Pdをシャトル触媒として用いたC(sp3)–H結合のヨウ素化反応を設計した。青色光照射下、励起された0価のPdがヨードアレーンを一電子還元し、Pd(I)–Iとアリールラジカルを生成する。続いて、アリールラジカルがC(sp3)–H結合から水素原子を引き抜いてアルキルラジカルを生じ、還元的脱離(RE)または XAT によりアルキルヨウ化物を与える(図 1D)。

図1. (A) 現在のC(sp3)–Hヨウ素化の手法 (B)シャトル触媒によるヨウ素化 (C) 光駆動型Pd触媒 (D) 本研究 : C(sp2)–I/C(sp3)–H移動反応

 

“Palladium-Catalyzed Transfer Iodination from Aryl Iodides to Nonactivated C(sp3)H Bonds”

Saux, E. L.; Morandi, B. J. Am. Chem. Soc. 2025, 147, 12956–12961.
DOI: 10.1021/jacs.5c02553

論文著者の紹介

研究者: Bill Morandi (研究室HP)

研究者の経歴: 2012               Ph.D., Swiss Federal Institute of Technology in Zurich, Switzerland (Prof. Erick M. Carreira)

2012–2014          Postdoc, California Institute of Technology, USA (Prof. Robert H. Grubbs)

2014–2018          Group Leader, Max Planck Institute for Coal Research, Germany

2018–2022          Associate Professor, Swiss Federal Institute of Technology in Zurich, Switzerland

 

論文の概要

ベンゼン中、10 mol%のPd(PPh3)4/Xantphos触媒存在下、ヨードアレーン1とアルカン2に室温で青色光を照射すると、C(sp2)–I/C(sp3)–H結合交換反応が進行し、アルキルヨウ化物3と水素化体4が得られた(図 2A)。本反応により、単純な環状アルカン2aからは高収率で3aが得られ、非対称な2bおよび2cでは、立体・電子的要因に基づく二級C(sp3)–H選択的なヨウ素化が進行し対応する3bおよび3cが得られた。さらに、Pd触媒による酸化的付加および一電子移動が関与する可能性のあるアリールブロミド2dや、天然物誘導体2eも良好な収率で3dおよび3eへ変換された。

推定反応機構を図 2Bに、その根拠を下記に示す。

1の設計:1に対する望ましくないPdの酸化的付加と生成するアリールラジカル5の副反応を抑制するため、オルト位に置換基を導入してC(sp2)–I結合周辺の立体障害を増大させた。また、励起Pdからの一電子還元を促進すべく、電子求引性のCF3基が導入された。

中間体 I からの HAT 経路:重水素化シクロヘキサンd2aを用いた実験で、生成物4の80%以上に重水素が導入されたことから HAT 経路の進行が支持される(図 2Ba)。

中間体 II からの XAT 経路:1の代わりにブロモアレーン6を用いた際、2aの臭素化が進行したことから示唆される。通常の二価のPdによる RE ではC(sp³)-Br結合は形成されないためである(図 2Bb)[8]。なお、副経路として、 II は可逆的にPd(II)–アルキル種 III を経て RE によって3を与える可能性がある。また本反応の応用として、C(sp3)–H結合のチオ化反応も実現した。II にチオフェノール塩を加えると、Pd上でヨウ素がチオラートに置換され、可逆的な XAT が不可逆的なC(sp³)–S結合形成に転じる(図 2C)。

以上、本手法は可逆性を活かし、チオ化反応のみならず多様なC(sp³)–H結合変換反応への応用が期待され、分子変換手法の拡張に向けた有用な新戦略となると考えられる。

図2. (A) 最適条件と基質適用範囲 (B) 推定反応機構とその根拠 (C) 触媒的C(sp3)–Hチオ化反応

 

参考文献

  1. (a) Rogge, T.; Kaplaneris, N.; Chatani, N.; Kim, J.; Chang, S.; Punji, B.; Schafer, L. L.; Musaev, D. G.; Wencel-Delord, J.; Roberts, C. A.; Sarpong, R.; Wilson, Z. E.; Brimble, M. A.; Johansson, M. J.; Ackermann, L. C–H Activation. Nat Rev Methods Primers. 2021, 1, 43. DOI: 10.1038/s43586-021-00041-2 (b) Guillemard, L.; Kaplaneris, N.; Ackermann, L.; Johansson, M. J. Late-Stage C–H Functionalization Offers New Opportunities in Drug Discovery. Nat Rev Chem. 2021, 5, 522–545. DOI: 10.1038/s41570-021-00300-6 (c) Golden, D. L.; Suh, S.-E.; Stahl, S. S. Radical C(sp3)–H Functionalization and Cross-Coupling Reactions. Nat Rev Chem. 2022, 6, 405–427. DOI: 10.1038/s41570-022-00388-4
  2. (a) Huyser, E. S. Homolytic Mechanisms of Substitution. In PATAI’S Chemistry of Functional Groups; Patai, S., Ed. 1973, 549–607. DOI: 10.1002/9780470771280.ch8 (b) Rossberg, M.; Lendle, W.; Pfleiderer, G.; Tögel, A.; Torkelson, T. R.; Beutel, K. K. Chloromethanes. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley, 2011. DOI: 10.1002/14356007.a06_233.pub3
  3. (a) Schmidt, V. A.; Quinn, R. K.; Brusoe, A. T.; Alexanian, E. J. Site-Selective Aliphatic C–H Bromination Using N -Bromoamides and Visible Light. J. Am. Chem. Soc. 2014, 136, 14389–14392. DOI: 10.1021/ja508469u (b) Quinn, R. K.; Könst, Z. A.; Michalak, S. E.; Schmidt, Y.; Szklarski, A. R.; Flores, A. R.; Nam, S.; Horne, D. A.; Vanderwal, C. D.; Alexanian, E. J. Site-Selective Aliphatic C–H Chlorination Using N -Chloroamides Enables a Synthesis of Chlorolissoclimide. J. Am. Chem. Soc. 2016, 138, 696–702. DOI: 10.1021/jacs.5b12308 (c) Carestia, A. M.; Ravelli, D.; Alexanian, E. J. Reagent-Dictated Site Selectivity in Intermolecular Aliphatic C–H Functionalizations Using Nitrogen-Centered Radicals. Chem. Sci. 2018, 9, 5360–5365. DOI: 10.1039/C8SC01756E
  4. Scala, A. A. Free Radical Halogenation, Selectivity, and Thermodynamics: The Polanyi Principle and Hammond’s Postulate. J. Chem. Educ. 2004, 81, 1661. DOI: 10.1021/ed081p1661
  5. (a) Schreiner, P. R.; Lauenstein, O.; Butova, E. D.; Fokin, A. A. The First Efficient Iodination of Unactivated Aliphatic Hydrocarbons. Angew. Chem., Int. Ed. 1999, 38, 2786–2788. DOI: 10.1002/(SICI)1521-3773(19990917)38:18<2786::AID-ANIE2786>3.0.CO;2-0 (b) Barluenga, J.; González-Bobes, F.; González, J. M. Activation of Alkanes upon Reaction with PhI(OAc)2-I2. Angew. Chem., Int. Ed. 2002, 41, 2556–2558. DOI: 10.1002/1521-3773(20020715)41:14<2556::AID-ANIE2556>3.0.CO;2-C (c) Montoro, R.; Wirth, T. Direct Iodination of Alkanes. Org. Lett. 2003, 5, 4729–4731. DOI: 10.1021/ol0359012 (d) Barluenga, J.; Campos‐Gómez, E.; Rodríguez, D.; González‐Bobes, F.; González, J. M. New Iodination Reactions of Saturated Hydrocarbons. Angew. Chem., Int. Ed. 2005, 44, 5851–5854. DOI: 10.1002/anie.200501195 (e) Artaryan, A.; Mardyukov, A.; Kulbitski, K.; Avigdori, I.; Nisnevich, G. A.; Schreiner, P. R.; Gandelman, M. Aliphatic C–H Bond Iodination by a N-Iodoamide and Isolation of an Elusive N-Amidyl Radical. J. Org. Chem. 2017, 82, 7093–7100. DOI: 10.1021/acs.joc.7b00557 (f) Fazekas, T. J.; Alty, J. W.; Neidhart, E. K.; Miller, A. S.; Leibfarth, F. A.; Alexanian, E. J. Diversification of Aliphatic C–H Bonds in Small Molecules and Polyolefins through Radical Chain Transfer. Science 2022, 375, 545–550. DOI: 10.1126/science.abh4308
  6. Lee, Y. H.; Morandi, B. Metathesis-Active Ligands Enable a Catalytic Functional Group Metathesis between Aroyl Chlorides and Aryl Iodides. Nature Chem. 2018, 10, 1016–1022. DOI: 10.1038/s41557-018-0078-8
  7. Sarkar, S.; Cheung, K. P. S.; Gevorgyan, V. Recent Advances in Visible Light Induced Palladium Catalysis. Angew. Chem., Int. Ed. 2024, 63, e202311972. DOI: 10.1002/anie.202311972
  8. Petrone, D. A.; Ye, J.; Lautens, M. Modern Transition-Metal-Catalyzed Carbon–Halogen Bond Formation. Chem. Rev. 2016, 116, 8003–8104. DOI: 10.1021/acs.chemrev.6b00089
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 部分酸化状態を有する純有機中性分子結晶の開発に初めて成功
  2. Cell Press “Chem” 編集者 × 研究者トークセッ…
  3. 地球外生命体を化学する
  4. Nature Catalysis創刊!
  5. 真空ポンプはなぜ壊れる?
  6. ユニークな名前を持つ配位子
  7. 【6月開催】 【第二期 マツモトファインケミカル技術セミナー開催…
  8. 細胞懸濁液をのせて、温めるだけで簡単に巨大ながんスフェロイドがで…

注目情報

ピックアップ記事

  1. Christoper Uyeda教授の講演を聴講してみた
  2. 実験する時の服装(企業研究所)
  3. リングサイズで性質が変わる蛍光性芳香族ナノベルトの合成に成功
  4. Illustrated Guide to Home Chemistry Experiments
  5. ビタミンB1塩酸塩を触媒とするぎ酸アミド誘導体の合成
  6. 三共、第一製薬が統合へ 売上高9000億円規模
  7. 第44回「100%の効率を目指せば、誤魔化しのないサイエンスが見える」安達千波矢教授
  8. 中性ケイ素触媒でヒドロシリル化
  9. 電子を閉じ込める箱: 全フッ素化キュバンの合成
  10. 「シカゴとオースティンの6年間」 山本研/Krische研より

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2025年6月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP