[スポンサーリンク]

化学者のつぶやき

スルホンアミドからスルホンアミドを合成する

[スポンサーリンク]

スルホンアミドを、温和な条件で塩化スルホニルに変換する手法が開発された。本法は合成終盤で、求核性が低く反応しにくい一級スルホンアミドを、強力な求電子剤である塩化スルホニルに変換することが可能で、スルホンアミド・スルホン酸、フッ化スルホニルなどへ誘導できる

スルホンアミド合成

スルホンアミドと関連するスルホニル化合物は医農薬にみられる重要骨格である。そのため、スルホンアミド類の効率的かつ温和な新合成手法の開発は注目に値する。一般的にスルホンアミドは、強力な求電子剤である塩化スルホニルとアミンを反応させることで得られる。しかし、塩化スルホニルはスルフィドを酸化したのち、得られたスルホン酸に塩化ホスホリルを作用させるか、スルフィドに直接塩化スルフリルなどの強い酸化剤を作用させることで得られるため、適用できる基質が限られる(図1A)。一方、塩化スルホニルを経由しない、カップリングによる芳香族スルホンアミド類の合成手法も近年多く報告されている。例えば2010年、WillisらはDABCO・(SO2)2を二酸化硫黄源、ヒドラジンを求核剤としたハロゲン化アリールのアミノスルホニル化を報告した[1]。また、2018年にはWuらが同試薬を用いた、アリールジアゾニウム塩の芳香族スルホンアミド化を開発している(図1B)[2]。しかし、これらは芳香族スルホンアミドのみ合成可能であり、基質一般性も低い。
直近では、Fier, MaloneyらがNHC触媒による一級スルホンアミドの脱アミノ化・官能基化を報告した。スルホンアミドをスルフィン酸へ変換し、求電子剤を作用させることで、官能基を導入した(図1C)[3]。しかし、官能基は求電子剤に限定され、アミンやアルコールの直接導入は困難であった。
マックス・プランク石炭研究所のCornellaらは、合成終盤で様々なスルホニル化合物へ変換するためには、改めて強力な求電子剤である塩化スルホニルの生成が最も有効だと考えた。そこで、今回筆者らは一級スルホンアミドに対し、ピリリウム塩[4]と塩化マグネシウムを作用させることで、温和な条件での塩化スルホニル合成を達成し、複雑な求核的官能基の導入を可能にした(図1D)。

図1. (A) 酸化剤による塩化スルホニル合成 (B) カップリングによるスルホンアミドの合成 (C) 脱アミノ化/官能基化反応 (D) 今回の反応

 

Selective Late-Stage Sulfonyl Chloride Formation from Sulfonamides Enabled by Pyry-BF4
Palomino, A. G.; Cornella, J. Angew. Chem., Int. Ed. 2019, 58, 18235–18239.
DOI: 10.1002/anie.201910895

論文著者の紹介

https://www.cornellab.com/aboutjc#bio

研究者:Josep Cornella
研究者の経歴:–2008 MSc, The University of Barcelona, Spain
2008–2012 Ph.D., The Queen Mary University of London, England (Prof. Igor Larrosa)
2012–2015 Postdoc, The Institute of Chemical Research of Catalunya, Spain (Prof. Ruben Martin)
2015–2017 Postdoc, The Scripps Research Institute, USA (Prof. Phil S. Baran)
2017– Research Group Leader, The Max-Planck-Institut für Kohlenforschung, Germany
研究内容:遷移金属触媒を用いた反応開発、有機合成における持続可能な触媒開発

論文の概要

本反応はtBuOH溶媒中、一級スルホンアミドとピリリウム塩Pyry-BF4(1)が縮合し、活性種2が生成する。続いて2と塩化マグネシウムが反応し、塩化スルホニル3を与える。添加剤を加えない場合は、水が2と反応しスルホン酸4を与える(図2A)。
芳香族スルホンアミドのみならずアルキルスルホンアミドにおいても、塩化スルホニル3a3cまたはスルホン酸4a4cを与えた。しかし、芳香環に電子求引基をもつアリールスルホンアミドは中程度の収率にとどまった(3d,4d)。アルコールを有する場合でも高収率で塩化スルホニルが得られたが(3e)、アミノ基を有する場合は得られなかった(3f)。さらに、トリフルオロメチルケトンやアミドを含むスルホンアミド(3g)やフロセミド(3h)など、一級スルホンアミドを有する医薬品も同様に塩化スルホニルへの誘導化に成功した (図2B)。高い求電子性を有する塩化スルホニルが温和な条件で得られたことにより、種々の求核剤を導入することができる。例えば、フロセミド誘導体やセレコキシブ誘導体を対応する塩化スルホニルに変換しアモキサピンやシタグリプチンなどの複雑なアミンと高収率で縮合させることができる(5a5f)(図2C)。さらに、スルホンアミドのみならず、リンまたはフッ素を含む求核剤を用いた場合にS–P, S–F結合の形成も可能であった。

図2. (A) スルホンアミドの官能基変換 (B) 基質適用範囲 (C) スルホンアミドを含む医薬品の変換

以上、スルホンアミドから塩化スルホニルの温和な合成法が開発され、合成終盤にみられる複雑な骨格を有する求核剤の導入が可能になった。今後、医薬品誘導化への利用が期待される。

参考文献

  1. Nguyen, B.; Emmett, E. J.; Willis, M. C. Palladium-Catalyzed Aminosulfonylation of Aryl Halides. J. Am. Chem. Soc. 2010, 132, 16372–16373. DOI: 1021/ja1081124
  2. Zhang, F.; Zheng, D.; Lai, L.; Cheng, J.; Sun, J.; Wu, J. Synthesis of Aromatic Sulfonamides through a Copper-Catalyzed Coupling of Aryldiazonium Tetrafluoroborates, DABCO·(SO2)2, and N‐Chloroamines. Org. Lett. 2018, 20, 1167−1170. DOI: 1021/acs.orglett.8b00093
  3. Fier, P. S.; Maloney, K. M. NHC-Catalyzed Deamination of Primary Sulfonamides: A Platform for Late-Stage Functionalization. J. Am. Chem. Soc. 2019, 141, 1441−1445. DOI: 1021/jacs.8b11800
  4. Moser, D.; Duan, Y.; Wang, F.; Ma, Y.; O’Neill, M. J.; Cornella, J. Selective Functionalization of Aminoheterocycles by a Pyrylium Salt. Angew. Chem., Int.Ed. 2018, 57, 11035–11039. DOI: 1002/anie.201806271
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. ペプチドの草原にDNAの花を咲かせて、水中でナノスケールの花畑を…
  2. 一流科学者たちの経済的出自とその考察
  3. NMRデータ処理にもサブスクの波? 新たなNMRデータ処理ソフト…
  4. ケムステスタッフ Zoom 懇親会を開催しました【後編】
  5. 有機合成化学協会誌2024年7月号:イミン類縁体・縮環アズレン・…
  6. Q&A型ウェビナー マイクロ波化学質問会
  7. プラスマイナスエーテル!?
  8. 反応化学と生命科学の融合で新たなチャレンジへ【ケムステ×Hey!…

注目情報

ピックアップ記事

  1. 寺崎 治 Osamu Terasaki
  2. 第29回 適応システムの創製を目指したペプチドナノ化学 ― Rein Ulijn教授
  3. 官営八幡製鐵所関連施設
  4. 細菌ゲノム、完全合成 米チーム「人工生命」に前進
  5. サムライ化学者高峰譲吉「さくら、さくら」劇場鑑賞券プレゼント!
  6. 入江 正浩 Masahiro Irie
  7. 未来のノーベル化学賞候補者
  8. アメリカで Ph.D. を取る -Visiting Weekend 参加報告 (後編)-
  9. (+)-フロンドシンBの超短工程合成
  10. アゾ化合物シストランス光異性化

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年1月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP