[スポンサーリンク]

化学者のつぶやき

スルホンアミドからスルホンアミドを合成する

[スポンサーリンク]

スルホンアミドを、温和な条件で塩化スルホニルに変換する手法が開発された。本法は合成終盤で、求核性が低く反応しにくい一級スルホンアミドを、強力な求電子剤である塩化スルホニルに変換することが可能で、スルホンアミド・スルホン酸、フッ化スルホニルなどへ誘導できる

スルホンアミド合成

スルホンアミドと関連するスルホニル化合物は医農薬にみられる重要骨格である。そのため、スルホンアミド類の効率的かつ温和な新合成手法の開発は注目に値する。一般的にスルホンアミドは、強力な求電子剤である塩化スルホニルとアミンを反応させることで得られる。しかし、塩化スルホニルはスルフィドを酸化したのち、得られたスルホン酸に塩化ホスホリルを作用させるか、スルフィドに直接塩化スルフリルなどの強い酸化剤を作用させることで得られるため、適用できる基質が限られる(図1A)。一方、塩化スルホニルを経由しない、カップリングによる芳香族スルホンアミド類の合成手法も近年多く報告されている。例えば2010年、WillisらはDABCO・(SO2)2を二酸化硫黄源、ヒドラジンを求核剤としたハロゲン化アリールのアミノスルホニル化を報告した[1]。また、2018年にはWuらが同試薬を用いた、アリールジアゾニウム塩の芳香族スルホンアミド化を開発している(図1B)[2]。しかし、これらは芳香族スルホンアミドのみ合成可能であり、基質一般性も低い。
直近では、Fier, MaloneyらがNHC触媒による一級スルホンアミドの脱アミノ化・官能基化を報告した。スルホンアミドをスルフィン酸へ変換し、求電子剤を作用させることで、官能基を導入した(図1C)[3]。しかし、官能基は求電子剤に限定され、アミンやアルコールの直接導入は困難であった。
マックス・プランク石炭研究所のCornellaらは、合成終盤で様々なスルホニル化合物へ変換するためには、改めて強力な求電子剤である塩化スルホニルの生成が最も有効だと考えた。そこで、今回筆者らは一級スルホンアミドに対し、ピリリウム塩[4]と塩化マグネシウムを作用させることで、温和な条件での塩化スルホニル合成を達成し、複雑な求核的官能基の導入を可能にした(図1D)。

図1. (A) 酸化剤による塩化スルホニル合成 (B) カップリングによるスルホンアミドの合成 (C) 脱アミノ化/官能基化反応 (D) 今回の反応

 

Selective Late-Stage Sulfonyl Chloride Formation from Sulfonamides Enabled by Pyry-BF4
Palomino, A. G.; Cornella, J. Angew. Chem., Int. Ed. 2019, 58, 18235–18239.
DOI: 10.1002/anie.201910895

論文著者の紹介

https://www.cornellab.com/aboutjc#bio

研究者:Josep Cornella
研究者の経歴:–2008 MSc, The University of Barcelona, Spain
2008–2012 Ph.D., The Queen Mary University of London, England (Prof. Igor Larrosa)
2012–2015 Postdoc, The Institute of Chemical Research of Catalunya, Spain (Prof. Ruben Martin)
2015–2017 Postdoc, The Scripps Research Institute, USA (Prof. Phil S. Baran)
2017– Research Group Leader, The Max-Planck-Institut für Kohlenforschung, Germany
研究内容:遷移金属触媒を用いた反応開発、有機合成における持続可能な触媒開発

論文の概要

本反応はtBuOH溶媒中、一級スルホンアミドとピリリウム塩Pyry-BF4(1)が縮合し、活性種2が生成する。続いて2と塩化マグネシウムが反応し、塩化スルホニル3を与える。添加剤を加えない場合は、水が2と反応しスルホン酸4を与える(図2A)。
芳香族スルホンアミドのみならずアルキルスルホンアミドにおいても、塩化スルホニル3a3cまたはスルホン酸4a4cを与えた。しかし、芳香環に電子求引基をもつアリールスルホンアミドは中程度の収率にとどまった(3d,4d)。アルコールを有する場合でも高収率で塩化スルホニルが得られたが(3e)、アミノ基を有する場合は得られなかった(3f)。さらに、トリフルオロメチルケトンやアミドを含むスルホンアミド(3g)やフロセミド(3h)など、一級スルホンアミドを有する医薬品も同様に塩化スルホニルへの誘導化に成功した (図2B)。高い求電子性を有する塩化スルホニルが温和な条件で得られたことにより、種々の求核剤を導入することができる。例えば、フロセミド誘導体やセレコキシブ誘導体を対応する塩化スルホニルに変換しアモキサピンやシタグリプチンなどの複雑なアミンと高収率で縮合させることができる(5a5f)(図2C)。さらに、スルホンアミドのみならず、リンまたはフッ素を含む求核剤を用いた場合にS–P, S–F結合の形成も可能であった。

図2. (A) スルホンアミドの官能基変換 (B) 基質適用範囲 (C) スルホンアミドを含む医薬品の変換

以上、スルホンアミドから塩化スルホニルの温和な合成法が開発され、合成終盤にみられる複雑な骨格を有する求核剤の導入が可能になった。今後、医薬品誘導化への利用が期待される。

参考文献

  1. Nguyen, B.; Emmett, E. J.; Willis, M. C. Palladium-Catalyzed Aminosulfonylation of Aryl Halides. J. Am. Chem. Soc. 2010, 132, 16372–16373. DOI: 1021/ja1081124
  2. Zhang, F.; Zheng, D.; Lai, L.; Cheng, J.; Sun, J.; Wu, J. Synthesis of Aromatic Sulfonamides through a Copper-Catalyzed Coupling of Aryldiazonium Tetrafluoroborates, DABCO·(SO2)2, and N‐Chloroamines. Org. Lett. 2018, 20, 1167−1170. DOI: 1021/acs.orglett.8b00093
  3. Fier, P. S.; Maloney, K. M. NHC-Catalyzed Deamination of Primary Sulfonamides: A Platform for Late-Stage Functionalization. J. Am. Chem. Soc. 2019, 141, 1441−1445. DOI: 1021/jacs.8b11800
  4. Moser, D.; Duan, Y.; Wang, F.; Ma, Y.; O’Neill, M. J.; Cornella, J. Selective Functionalization of Aminoheterocycles by a Pyrylium Salt. Angew. Chem., Int.Ed. 2018, 57, 11035–11039. DOI: 1002/anie.201806271
山口 研究室

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 有機合成化学協会誌2018年11月号:オープンアクセス・英文号!…
  2. サリンを検出可能な有機化合物
  3. 向山アルドール反応40周年記念シンポジウムに参加してきました
  4. 生物の仕組みに倣う:背景と光に応じて色が変わる顔料の開発
  5. 可視光エネルギーを使って単純アルケンを有用分子に変換するハイブリ…
  6. 掟破り酵素の仕組みを解く
  7. 書店で気づいたこと ~電気化学の棚の衰退?~
  8. 金属ヒドリド水素原子移動(MHAT)を用いた四級炭素構築法

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 集積型金属錯体
  2. 第27回 生命活動の鍵、細胞間の相互作用を解明する – Mary Cloninger教授
  3. ガレン・スタッキー Galen D. Stucky
  4. モヴァッサージ脱酸素化 Movassaghi Deoxigenation
  5. 印象に残った天然物合成1
  6. 化学で「透明人間」になれますか? 人類の夢をかなえる最新研究15
  7. 立体選択的な(+)-Microcladallene Bの全合成
  8. ケムステイブニングミキサー2018ー報告
  9. フォルハルト・エルドマン環化 Volhard-Erdmann Cyclization
  10. 【速報】2017年ノーベル化学賞は「クライオ電子顕微鏡の開発」に!

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

細胞懸濁液をのせて、温めるだけで簡単に巨大ながんスフェロイドができる

第276回のスポットライトリサーチは、東京農工大学大学院工学研究院 准教授の吉野 大輔(よしの だい…

クラリベイト・アナリティクスが「引用栄誉賞2020」を発表!

9月23日に、クラリベイト・アナリティクス社から、2020年の引用栄誉賞が発表されました。こ…

アズワンが第一回ケムステVプレミアレクチャーに協賛しました

さて先日お知らせいたしましたが、ケムステVプレミアクチャーという新しい動画配信コンテンツをはじめます…

化学者のためのエレクトロニクス講座~代表的な半導体素子編

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLE…

第121回―「亜鉛勾配を検出する蛍光分子の開発」Lei Zhu教授

第121回の海外化学者インタビューは、Lei Zhu教授です。フロリダ州立大学 化学・生化学科で、亜…

高知市で「化学界の権威」を紹介する展示が開催中

明治から昭和にかけて“化学界の権威”として活躍した高知出身の化学者=近重真澄を紹介する展示が高知市で…

ケムステバーチャルプレミアレクチャーの放送開始決定!

主に最先端化学に関する講演者をテーマ別で招待しオンライン講演を行っていただくケムステバーチャルシンポ…

分子運動を世界最高速ムービーで捉える!

第275回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 博士課程・清水俊樹 さんに…

Chem-Station Twitter

PAGE TOP