[スポンサーリンク]

化学者のつぶやき

動的な軸不斉を有する大環状ホスト分子

[スポンサーリンク]

3つのテトラフェニルエチレン(TPE)部位と二つのナノ空間を有するホスト分子が開発された。水中で、ジヌクレオチドを4つの核酸塩基からなる複合体として取り込むことが可能である。

水中で生体分子を捕まえる

生体内において、DNAやRNA(核酸)は塩基配列に依存して複数の高次構造をとる[1]。この高次構造の形成を理解するためには、核酸の短い断片での複合体形成様式の研究が必要である。しかし、核酸の断片は、水中で水分子との水素結合が優先するため、複合体を形成させることは難しい。水中で核酸の高次構造を再現するためには、水分子との水素結合よりも強い相互作用を巧みに利用する必要がある[2]

これまで、水中で核酸断片を捕捉できるホスト分子が開発されてきた。例えば、テトラカチオンナノチューブ1やテオララクタム2は1つの核酸塩基誘導体を取り込むことができる (図1A)[3, 4]。一方、複数の核酸塩基を取り込める大きなナノ空間をもつホスト分子の例は少ない(図1B)[2, 5]。藤田らのPt錯体3、および、著者が以前報告した2つのExBox[6]にエチレンを挿入した4は、それぞれ四塩基複合体(A・T・A・T)、および、三塩基集合体(A・T・A)を取り込める。これら3や4のように複数の核酸塩基を水素結合をした集合体として捕捉するホスト分子の開発は、未だ発展途上といえる。

著者らは、以前報告した4へのエチレンの挿入様式を改変したホスト分子5を開発した(図1C)。5は、2つのナノ空間を有し、面不斉と動的なプロペラ型軸不斉をもつ。グアニン(G)とシトシン(C)のジヌクレオシドd(GpC)が形成する四塩基複合体[d(GpC)]2を2つ内包することができる。

図1. (A) ヌクレオシド三リン酸を捕捉するホスト分子 (B) ゲスト間で水素結合を形成する例 (C) 5のゲストとキラリティー

 

“Biomimetic Hydrogen-Bonded G · C · G · C Quadruplex within a Tetraphenylethene-Based Octacationic Spirobicycle in Water”
Zhao, L.; Cheng, L.; Yang, Y.; Wang, P.; Tian, P.; Yang, T.; Nian, H.; Cao, L. Angew. Chem., Int. Ed. 2024, e202405150.
DOI: 10.1002/anie.202405150

論文著者の紹介

研究者:Liping Cao (曹利平)

研究者の経歴:

2006                        B.S., Central China Normal University, School of Chemistry
2011                        Ph.D., Central China Normal University, School of Chemistry (Prof. Anxin Wu)
2011–2014         Postdoctoral Fellow, University of Maryland, Department of Chemistry and Biochemistry, USA (Prof. Lyle Isaacs)
2014–                     Professor, doctoral director, Northwest University, School of Chemistry and Materials Science, China
2017–2018       State-appointed visiting scholar, University of Utah, Department of Chemistry, USA (Prof. Peter Stang)

研究内容:新規水溶性カチオン性蛍光性大環状分子の合成と生体分子認識の研究, 大環状超分子骨格材料の構築と物性研究およびその応用

論文の概要

まず、著者らは彼らの先行研究[7]と同様の手法で5を塩化物(5·8Cl)として合成した。次に、5とジヌクレオチドd(GpC)の複合体形成を等温滴定熱測定により解析した。その結果、4つの結合定数が得られ(Ka1–4= 103–104)、5はd(GpC)と1:4の比でホスト–ゲスト複合体(5⊃[d(GpC)]4)を形成することが示唆された (図2A)。X線構造解析の結果、実際に5は2つの疎水性ナノ空間内にそれぞれ2つ[d(GpC)]を格納することがわかった(図2B)。取り込まれた[d(GpC)]は5とCH…p相互作用、CH…O水素結合を形成する。これらの相互作用による安定化エネルギーの総和が水分子との水素結合で得られる安定化エネルギーよりも大きいため、水中で複合体5⊃[d(GpC)]4を形成することができる。

加えて、[d(GpC)]4の取り込みによる5のプロペラ型軸不斉の変化を測定した。水中、円偏光二色性(CD: Circular Dichroism)スペクトルにおいて、5のみではシグナルは見られなかったが、[d(GpC)]4を添加するとテトラピリジニウムTPEのp-p*遷移に対応するシグナルが見られた(図2C)。つまり、5は[d(GpC)]4を内包することでプロペラ型軸不斉が固定されることを意味する。

また、長波長領域(410–500 nm)のCDスペクトルより、5⊃[d(GpC)]4のプロペラ型軸不斉はpHによって変化することが明らかとなった(図2D)。5⊃[d(GpC)]4は弱酸性条件下(pH = 5.74)で正のCotton効果を示し、塩基性条件下(pH = 9.22)で負のCotton効果を示した。先行研究より、それぞれMMMPPPのプロペラ型軸不斉であることがわかった[8]。一方、強酸性条件下(pH = 3.91)ではCotton効果を示さず、プロペラ型軸不斉が消失した。2つのd(GpC)はpH = 5.74においてHoogsteen型塩基対、pH = 9.22においてWatson–Crick型塩基対を形成し、pH = 3.91ではGとCが完全にプロトン化される。つまり、pH依存的な軸不斉変化はd(GpC)間の水素結合様式に依存していると考えられる。強酸性条件下(pH = 3.91)において軸不斉が消失したのは、プロトン化されたd(GpC)が取り込めなかったためと考えられる。したがって、5の立体配座はゲスト間の水素結合様式を反映することが示唆された。

図2. (A) 水中におけるホスト–ゲスト錯体の形成 (B) 5⊃[d(GpC)]4の単結晶X線構造 (C) 5の各pHにおけるCDスペクトル (D) pH依存的なゲスト分子の水素結合様式

参考文献

  1. Monsen, R. C.; Trent, J. O.; Chaires, J. B. G-Quadruplex DNA: A Longer Story.  Acc. Chem. Res.202255, 3242–3252.  DOI: 10.1021/acs.accounts.2c00519.
  2. Sawada, T.; Yoshizawa, M.; Sato, S.; Fujita, M. Minimal Nucleotide Duplex Formation in Water through Enclathration in Self-Assembled Hosts. Nat. Chem. 2009, 1, 53–56. DOI: 10.1038/nchem.100.
  3. Nian, H.; Cheng, L.; Wang, L.; Zhang, H.; Wang, P.; Li, Y.; Cao, L. Hierarchical Two‐Level Supramolecular Chirality of an Achiral Anthracene‐Based Tetracationic Nanotube in Water. Angew. Chem., Int. Ed. 2021, 60, 15354–15358. DOI: 10.1002/anie.202105593.
  4. Van Eker, D.; Samanta, S. K.; Davis, A. P. Aqueous Recognition of Purine and Pyrimidine Bases by an Anthracene-Based Macrocyclic Receptor. Chem. Commun. 202056, 9268–9271. DOI: 10.1039/D0CC03609A.
  5. Cheng, L.; Tian, P.; Li, Q.; Li, A.; Cao, L. Stabilization and Multiple-Responsive Recognition of Natural Base Pairs in Water by a Cationic Cage. CCS Chem. 2022, 4, 2914–2920. DOI: 31635/ccschem.021.202101584.
  6. Dale, E. J.; Vermeulen, N. A.; Juríček, M.; Barnes, J. C.; Young, R. M.; Wasielewski, M. R.; Stoddart, J. F. Supramolecular ExPlorations: ExHibiting the ExTent of ExTended Cationic Cyclophanes.  Acc. Chem. Res. 201649, 262–273. DOI: 10.1021/acs.accounts.5b00495.
  7. Duan, H.; Li, Y.; Li, Q.; Wang, P.; Liu, X.; Cheng, L.; Yu, Y.; Cao, L. Host–Guest Recognition and Fluorescence of a Tetraphenylethene‐Based Octacationic Cage. Angew. Chem., Int. Ed. 202059, 10101–10110. DOI: 10.1002/anie.201912730.
  8. Yan, C.; Li, Q.; Wang, K.; Yang, W.; Han, J.; Li, Y.; Dong, Y.; Chu, D.; Cheng, L.; Cao, L. “Gear-Driven”-Type Chirality Transfer of Tetraphenylethene-Based Supramolecular Organic Frameworks for Peptides in Water. Chem. Sci. 2024, 15, 3758–3766. DOI: 10.1039/D3SC06349F.
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 【書籍】パラグラフ・ライティングを基礎から訓練!『論理が伝わる …
  2. 水が決め手!構造が変わる超分子ケージ
  3. ナノグラムの油状試料もなんのその!結晶に封じて分子構造を一発解析…
  4. 酸素を使った触媒的Dess–Martin型酸化
  5. 有機合成化学協会誌2022年10月号:トリフルオロメチル基・気体…
  6. 【第14回Vシンポ特別企画】講師紹介:宮島 大吾 先生
  7. 酸で活性化された超原子価ヨウ素
  8. MOFはイオンのふるい~リチウム-硫黄電池への応用事例~

注目情報

ピックアップ記事

  1. 計算化学:基底関数って何?
  2. 第55回Vシンポ「企業のプロセス化学最前線」を開催します!
  3. 化学者のためのエレクトロニクス講座~5Gで活躍する化学メーカー編~
  4. 全合成 total synthesis
  5. ケミカルバイオロジーがもたらす創薬イノベーション ~ グローバルヘルスに貢献する天然物化学の新潮流 ~
  6. 不均一系接触水素化 Heterogeneous Hydrogenation
  7. 第13回 化学を楽しみ、創薬に挑み続ける ―Derek Lowe博士
  8. 2012年Wolf化学賞はナノケミストリーのLieber博士,Alivisatos博士に!
  9. 光触媒に相談だ 直鎖型の一級アミンはアンモニア水とアルケンから
  10. 20年新卒の志望業界ランキング、化学は総合3位にランクイン

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年8月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

7th Compound Challengeが開催されます!【エントリー〆切:2026年03月02日】 集え、”腕に覚えあり”の合成化学者!!

メルク株式会社より全世界の合成化学者と競い合うイベント、7th Compound Challenge…

乙卯研究所【急募】 有機合成化学分野(研究テーマは自由)の研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

大森 建 Ken OHMORI

大森 建(おおもり けん, 1969年 02月 12日–)は、日本の有機合成化学者。東京科学大学(I…

西川俊夫 Toshio NISHIKAWA

西川俊夫(にしかわ としお、1962年6月1日-)は、日本の有機化学者である。名古屋大学大学院生命農…

市川聡 Satoshi ICHIKAWA

市川 聡(Satoshi Ichikawa, 1971年9月28日-)は、日本の有機化学者・創薬化学…

非侵襲で使えるpH計で水溶液中のpHを測ってみた!

今回は、知っているようで知らない、なんとなく分かっているようで実は測定が難しい pH計(pHセンサー…

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP