[スポンサーリンク]

化学者のつぶやき

動的な軸不斉を有する大環状ホスト分子

[スポンサーリンク]

3つのテトラフェニルエチレン(TPE)部位と二つのナノ空間を有するホスト分子が開発された。水中で、ジヌクレオチドを4つの核酸塩基からなる複合体として取り込むことが可能である。

水中で生体分子を捕まえる

生体内において、DNAやRNA(核酸)は塩基配列に依存して複数の高次構造をとる[1]。この高次構造の形成を理解するためには、核酸の短い断片での複合体形成様式の研究が必要である。しかし、核酸の断片は、水中で水分子との水素結合が優先するため、複合体を形成させることは難しい。水中で核酸の高次構造を再現するためには、水分子との水素結合よりも強い相互作用を巧みに利用する必要がある[2]

これまで、水中で核酸断片を捕捉できるホスト分子が開発されてきた。例えば、テトラカチオンナノチューブ1やテオララクタム2は1つの核酸塩基誘導体を取り込むことができる (図1A)[3, 4]。一方、複数の核酸塩基を取り込める大きなナノ空間をもつホスト分子の例は少ない(図1B)[2, 5]。藤田らのPt錯体3、および、著者が以前報告した2つのExBox[6]にエチレンを挿入した4は、それぞれ四塩基複合体(A・T・A・T)、および、三塩基集合体(A・T・A)を取り込める。これら3や4のように複数の核酸塩基を水素結合をした集合体として捕捉するホスト分子の開発は、未だ発展途上といえる。

著者らは、以前報告した4へのエチレンの挿入様式を改変したホスト分子5を開発した(図1C)。5は、2つのナノ空間を有し、面不斉と動的なプロペラ型軸不斉をもつ。グアニン(G)とシトシン(C)のジヌクレオシドd(GpC)が形成する四塩基複合体[d(GpC)]2を2つ内包することができる。

図1. (A) ヌクレオシド三リン酸を捕捉するホスト分子 (B) ゲスト間で水素結合を形成する例 (C) 5のゲストとキラリティー

 

“Biomimetic Hydrogen-Bonded G · C · G · C Quadruplex within a Tetraphenylethene-Based Octacationic Spirobicycle in Water”
Zhao, L.; Cheng, L.; Yang, Y.; Wang, P.; Tian, P.; Yang, T.; Nian, H.; Cao, L. Angew. Chem., Int. Ed. 2024, e202405150.
DOI: 10.1002/anie.202405150

論文著者の紹介

研究者:Liping Cao (曹利平)

研究者の経歴:

2006                        B.S., Central China Normal University, School of Chemistry
2011                        Ph.D., Central China Normal University, School of Chemistry (Prof. Anxin Wu)
2011–2014         Postdoctoral Fellow, University of Maryland, Department of Chemistry and Biochemistry, USA (Prof. Lyle Isaacs)
2014–                     Professor, doctoral director, Northwest University, School of Chemistry and Materials Science, China
2017–2018       State-appointed visiting scholar, University of Utah, Department of Chemistry, USA (Prof. Peter Stang)

研究内容:新規水溶性カチオン性蛍光性大環状分子の合成と生体分子認識の研究, 大環状超分子骨格材料の構築と物性研究およびその応用

論文の概要

まず、著者らは彼らの先行研究[7]と同様の手法で5を塩化物(5·8Cl)として合成した。次に、5とジヌクレオチドd(GpC)の複合体形成を等温滴定熱測定により解析した。その結果、4つの結合定数が得られ(Ka1–4= 103–104)、5はd(GpC)と1:4の比でホスト–ゲスト複合体(5⊃[d(GpC)]4)を形成することが示唆された (図2A)。X線構造解析の結果、実際に5は2つの疎水性ナノ空間内にそれぞれ2つ[d(GpC)]を格納することがわかった(図2B)。取り込まれた[d(GpC)]は5とCH…p相互作用、CH…O水素結合を形成する。これらの相互作用による安定化エネルギーの総和が水分子との水素結合で得られる安定化エネルギーよりも大きいため、水中で複合体5⊃[d(GpC)]4を形成することができる。

加えて、[d(GpC)]4の取り込みによる5のプロペラ型軸不斉の変化を測定した。水中、円偏光二色性(CD: Circular Dichroism)スペクトルにおいて、5のみではシグナルは見られなかったが、[d(GpC)]4を添加するとテトラピリジニウムTPEのp-p*遷移に対応するシグナルが見られた(図2C)。つまり、5は[d(GpC)]4を内包することでプロペラ型軸不斉が固定されることを意味する。

また、長波長領域(410–500 nm)のCDスペクトルより、5⊃[d(GpC)]4のプロペラ型軸不斉はpHによって変化することが明らかとなった(図2D)。5⊃[d(GpC)]4は弱酸性条件下(pH = 5.74)で正のCotton効果を示し、塩基性条件下(pH = 9.22)で負のCotton効果を示した。先行研究より、それぞれMMMPPPのプロペラ型軸不斉であることがわかった[8]。一方、強酸性条件下(pH = 3.91)ではCotton効果を示さず、プロペラ型軸不斉が消失した。2つのd(GpC)はpH = 5.74においてHoogsteen型塩基対、pH = 9.22においてWatson–Crick型塩基対を形成し、pH = 3.91ではGとCが完全にプロトン化される。つまり、pH依存的な軸不斉変化はd(GpC)間の水素結合様式に依存していると考えられる。強酸性条件下(pH = 3.91)において軸不斉が消失したのは、プロトン化されたd(GpC)が取り込めなかったためと考えられる。したがって、5の立体配座はゲスト間の水素結合様式を反映することが示唆された。

図2. (A) 水中におけるホスト–ゲスト錯体の形成 (B) 5⊃[d(GpC)]4の単結晶X線構造 (C) 5の各pHにおけるCDスペクトル (D) pH依存的なゲスト分子の水素結合様式

参考文献

  1. Monsen, R. C.; Trent, J. O.; Chaires, J. B. G-Quadruplex DNA: A Longer Story.  Acc. Chem. Res.202255, 3242–3252.  DOI: 10.1021/acs.accounts.2c00519.
  2. Sawada, T.; Yoshizawa, M.; Sato, S.; Fujita, M. Minimal Nucleotide Duplex Formation in Water through Enclathration in Self-Assembled Hosts. Nat. Chem. 2009, 1, 53–56. DOI: 10.1038/nchem.100.
  3. Nian, H.; Cheng, L.; Wang, L.; Zhang, H.; Wang, P.; Li, Y.; Cao, L. Hierarchical Two‐Level Supramolecular Chirality of an Achiral Anthracene‐Based Tetracationic Nanotube in Water. Angew. Chem., Int. Ed. 2021, 60, 15354–15358. DOI: 10.1002/anie.202105593.
  4. Van Eker, D.; Samanta, S. K.; Davis, A. P. Aqueous Recognition of Purine and Pyrimidine Bases by an Anthracene-Based Macrocyclic Receptor. Chem. Commun. 202056, 9268–9271. DOI: 10.1039/D0CC03609A.
  5. Cheng, L.; Tian, P.; Li, Q.; Li, A.; Cao, L. Stabilization and Multiple-Responsive Recognition of Natural Base Pairs in Water by a Cationic Cage. CCS Chem. 2022, 4, 2914–2920. DOI: 31635/ccschem.021.202101584.
  6. Dale, E. J.; Vermeulen, N. A.; Juríček, M.; Barnes, J. C.; Young, R. M.; Wasielewski, M. R.; Stoddart, J. F. Supramolecular ExPlorations: ExHibiting the ExTent of ExTended Cationic Cyclophanes.  Acc. Chem. Res. 201649, 262–273. DOI: 10.1021/acs.accounts.5b00495.
  7. Duan, H.; Li, Y.; Li, Q.; Wang, P.; Liu, X.; Cheng, L.; Yu, Y.; Cao, L. Host–Guest Recognition and Fluorescence of a Tetraphenylethene‐Based Octacationic Cage. Angew. Chem., Int. Ed. 202059, 10101–10110. DOI: 10.1002/anie.201912730.
  8. Yan, C.; Li, Q.; Wang, K.; Yang, W.; Han, J.; Li, Y.; Dong, Y.; Chu, D.; Cheng, L.; Cao, L. “Gear-Driven”-Type Chirality Transfer of Tetraphenylethene-Based Supramolecular Organic Frameworks for Peptides in Water. Chem. Sci. 2024, 15, 3758–3766. DOI: 10.1039/D3SC06349F.
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. キッチン・ケミストリー
  2. 学生はなんのために研究するのか? 研究でスキルアップもしませんか…
  3. 開催間近!ケムステも出るサイエンスアゴラ2013
  4. 化学者のためのエレクトロニクス講座~化合物半導体編
  5. 第30回光学活性化合物シンポジウム
  6. エキノコックスにかかわる化学物質について
  7. 光触媒を用いるスピロ環合成法が創薬の未来を明るく照らす
  8. なぜ電子が非局在化すると安定化するの?【化学者だって数学するっつ…

注目情報

ピックアップ記事

  1. 発光材料を光で加工する~光と酸の二重刺激で材料加工~
  2. 牛糞からプラスチック原料 水素とベンゼン、北大が成功
  3. ジョンソン オレフィン合成 Johnson Olefination
  4. マーデルング インドール合成 Madelung Indole Synthesis
  5. 光応答性リキッドマーブルのマイクロリアクターとしての機能開拓
  6. Altmetric Score Top 100をふりかえる ~2018年版~
  7. いつ、どこで体内に 放射性物質に深まる謎
  8. 化学者のためのエレクトロニクス入門① ~電子回路の歴史編~
  9. 【無料】化学英語辞書がバージョンアップ!
  10. 第39回ケムステVシンポ「AIが拓く材料開発の最前線」を開催します!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年8月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

光励起で芳香族性を獲得する分子の構造ダイナミクスを解明!

第 654 回のスポットライトリサーチは、分子科学研究所 協奏分子システム研究セ…

藤多哲朗 Tetsuro Fujita

藤多 哲朗(ふじた てつろう、1931年1月4日 - 2017年1月1日)は日本の薬学者・天然物化学…

MI conference 2025開催のお知らせ

開催概要昨年エントリー1,400名超!MIに特化したカンファレンスを今年も開催近年、研究開発…

【ユシロ】新卒採用情報(2026卒)

ユシロは、創業以来80年間、“油”で「ものづくり」と「人々の暮らし」を支え続けている化学メーカーです…

Host-Guest相互作用を利用した世界初の自己修復材料”WIZARDシリーズ”

昨今、脱炭素社会への実現に向け、石油原料を主に使用している樹脂に対し、メンテナンス性の軽減や材料の長…

有機合成化学協会誌2025年4月号:リングサイズ発散・プベルル酸・イナミド・第5族遷移金属アルキリデン錯体・強発光性白金錯体

有機合成化学協会が発行する有機合成化学協会誌、2025年4月号がオンラインで公開されています!…

第57回若手ペプチド夏の勉強会

日時2025年8月3日(日)~8月5日(火) 合宿型勉強会会場三…

人工光合成の方法で有機合成反応を実現

第653回のスポットライトリサーチは、名古屋大学 学際統合物質科学研究機構 野依特別研究室 (斎藤研…

乙卯研究所 2025年度下期 研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

次世代の二次元物質 遷移金属ダイカルコゲナイド

ムーアの法則の限界と二次元半導体現代の半導体デバイス産業では、作製時の低コスト化や動作速度向上、…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP