[スポンサーリンク]

一般的な話題

香料:香りの化学3

[スポンサーリンク]

今日は匂い、香料と香料業界のお話です。香料とは何かについて基本的な話は、香料の化学1を、合成香料のについてその歴史・合成法・利用例については香料の化学2を参照ください。

香り

匂いは五感の一つであり、ヒトには390程度の嗅覚受容体(GPCR)が存在し空気中の物質を検知することができると考えられています。これら匂いの受容体、実は超高感度な検出器で、例えばユズノン[1]というケトンや一部のチオール類は10pptレベルで匂いを検知することができます。ちなみにこの10pptという濃度、25メートルプールに化合物を1滴を垂らした程度の濃度です。

YuzunoneTM

香料の区分

香料は大きく、合成香料天然香料に分けられます。

天然香料は水蒸気蒸留、溶剤抽出、圧搾などの方法により得られる香料で、価格、動植物の収穫量や品質に変動性があり、価格も不安定で高価になりがちです。例えば雄のジャコウジカから得られる天然香料muscone ((R)-3-methylcyclopentadecanone)は、その独特な芳香と希少性から昔から重宝されてきました。その有用な匂い成分を得るため、ジャコウジカは乱獲され、絶滅の危機に瀕してしまい、ワシントン条約により保護されることになりました。そのため、この天然香料成分の供給は合成により行われています。

合成香料は量、匂いなどの品質、価格を安定して供給することができるため、比較的低価格です。合成香料は主なもので500種類程度、マイナーなものまで含めると3000以上あり、現在では合成香料の製造が天然香料のそれを大きく上回っています。

また香料は用途別に、私たちが食べる食品の風味(食品香料、フレイバー)と香水やオーデコロンの芳香、洗剤の香りなどの(香粧品香料、フレグランス)の二つに大きく分けられます。これら二つの市場規模は世界的には同程度ですが、日本企業もっぱらフレーバーに重点化しています。

香料の会社

皆様、医薬品企業はよくご存知のことと思いますが、香料業界はいかがでしょうか? この業界、どうなっているかと調べてみますと、意外とヨーロッパの企業、スイスとフランスが健闘していることがわかります。やはり、香水の流行の先端はパリコレから来るのか、風呂に入らない人が多いから香水の需要が高くてこうなってしまったのか、よくわかりませんが、1位から5位はこんな感じです。(%は世界シェア)

1位、ジボダン (Givaudan), Geneva in Switzerland, 19%
世界最大の香料メーカー、スイス、チューリッヒ郊外に研究所があります。
2位、フィルメニッヒ (Firmenich), Geneva in Switzerland, 14%
株式非公開のオーナー企業。
3位、IFF (International Flavors and Fragrances), New Jersey in US, 12%
4位、シムライズ (Symrise) Holtzminden in Germany, 12%
1874年TiemannとHaarmannがバニリンの工業的な合成を始めたことに端を発し、2002年の合併により設立された香料会社。
5位、高砂香料, 日本, 5%
Ru-BINAP触媒を用いたメントールの工業プロセスで有名。

その他の香料会社として仏大手香料会社のV. Mane FilsやアメリカのSensient Technologiesなどが続き、日本には高砂の他、長谷川香料小川香料曽田香料などがあります。

香料化合物の特性

どんな化合物が香料になるのでしょうか? 一般的に香料は分子量100-300の揮発性物質で、炭素数では上限がおよそ20、化合物は親油性かつ水も溶け、嗅覚受容体に結合するものが多いとされています。

また香料は、API (Active Pharmaceutical Ingredients = 医薬品の原薬)やAgrochemicalに比べて芳香環を持つ分子やヘテロ原子を多数有する分子は少なく(ヘテロ原子を多数有する場合無臭になってしまう)、ほとんどの香料が炭素、水素、酸素で構成され、窒素や硫黄が含まれるものもあります。低分子だけあって光学活性な化合物の数は少なめですが、メントールのように、光学活性物質は光学異性体によって匂いが異なることがあります。

匂い嗅ぎガスクロ

これらの合成または抽出した香料の分析で役立つのが、匂い嗅ぎガスクロです。近年の分析機器の進歩にも関わらず、時には人の嗅覚の方が分析機器の検出器より高感度で、匂い嗅ぎガスクロは匂い分析に不可欠な手段とされています。この匂い(Olfactory)とMassのコンビネーションなどで化合物の同定などが可能です(GC-MS-O)。

余談ですが、通常私たちが感じる匂いは数十もしくは数百化合物の混合物であるため、すごく不快な匂いを有するものであってもそれをGC-MS-O分析してみると、実はいい匂いの物質も混じっているということも多々あります。もちろんその中にはとてつもなく臭い物質もあります。例)ショクダイオオコンニャクが放つ特異臭気成分の研究[2]

匂い嗅ぎガスクロ。出典(日立化成HPより)

化合物の組み合わせと香り

香料の化学で最も重要なのが、化合物の組み合わせです。香料は複数の化合物をある一定の割合で混ぜることにより、一つの化合物では得られない複雑な匂いを作り出すことができます。このようなブレンド技術は、調香師の確保(育成)とノウハウ(調合技術)の蓄積が決定的で、簡単には真似できません。

ちなみに、フランスなどにはこの調香師の専門の学校があり、調香師になるにはまず、2000種類を超える原料と香りを記憶し、数種類から10種類程度の香料のバランスを香りだけで再現する訓練を積み、その後10年程度経験を積むことで一人前になることができます。すごいですね。

香料の合成とプロセス

ところで、皆さんも揮発性物質の合成を行った時、意外と使える溶媒が少なく、揮発性なのでエバポしたらすぐに飛んで行ってしまい、構造は簡単なはずなのに、意外と手こずってしまったことはありませんか? 私も、揮発性化合物の合成をしていて高真空ポンプに繋いだらなくなったんですけど、どうしましょう? って言っている後輩を見たことがあります。(笑)

香料の製造ではその揮発性ゆえ、APIやAgrochemicalのように結晶化による精製はほとんど行われることがなく、精製はほとんど蒸留です。香料の難しいところとして、不純物プロファイルが製品の品質にもろに影響する場合があるということが挙げられます。特にあまり香りが強くない化合物は顕著で、安全性には全く問題ない0.1%の不純物で香りの質がおかしくなるといったこともあるようです。そのため、単離収率を10%削って、その0.1%の不純物を精密蒸留で除去するといったこともあるようです。

さらに製造においては、Agrochemicalほどコストを低く抑える必要はありませんが、APIほどコストがかかってしまうと売れなくなってしまうので、その中間のコストバランスが要求されます。一方で香料の合成は、酸素官能基など、合成の足がかりとなるヘテロ原子の数が少ないために、小さな分子でも短工程で効率的に合成しようと思うと案外難しく、合成プロセスの開発は化学者の腕が問われます。

香料業界

香料業界は合成もしくは単離した化合物をただ単に売るだけではなく、化合物を混ぜて売ることができるため、他業種からの参入障壁が高くなっています。

また業界全体として、香料化合物はフレイバーでは約3000種類、フレグランスでも同程度とかなり多くの種類の香料が使われているものの、マイナーな香料成分の場合、日本全体で年間1トンも使われない化合物も多くあります。モノによっては匂いがあまりにも強く年間1gもあれば、足りてしまう化合物もあるようです。そのためスケールメリットが生かしにくく(多品種少量生産)、ニッチな産業として安定して存在しているのではないかと思われます。

現在、医薬品の業界では自分が合成した化合物が上市される確率は非常に低いですが、香料の場合は自分が合成した化合物が市場で回る可能性が比較的高いと言われています。エバポですぐ飛んでしまう、臭う化合物の合成は大変ですが、香料業界もやりがいのある魅力的な業界ではないでしょうか? 今回はこの辺で。

参考文献

  1. Miyazawa, N.; Tomita, N.; Kurobayashi, K.; Nakanishi, K.; Ohkubo, Y.; Maeda, T.; Fujita, A.; J. Agric. Food Chem., 2009, 57, 1990–1996.  DOI : 10.1021/jf803257x
  2. Shirasu, M.;  Fujioka, K.; Kakishima, S.; Nagai, S.; Tomizawa, Y.; Tsukaya, H.; Murata, J.; Manome, Y.; Touhara, K.; Biosci. Biotechnol. Biochem., 2010, 74, 2550-2554. DOI: 10.1271/bbb.100692

関連書籍

関連リンク

The following two tabs change content below.

Gakushi

東京の大学で修士を修了後、インターンを挟み、スイスで博士課程の学生として働いていました。現在オーストリアでポスドクをしています。博士号は取れたものの、ハンドルネームは変えられないようなので、今後もGakushiで通します。

関連記事

  1. Bayer Material Scienceの分離独立が語るもの…
  2. 共役はなぜ起こる?
  3. 2009年イグノーベル賞決定!
  4. ゲノム編集CRISPRに新たな進歩!トランスポゾンを用いた遺伝子…
  5. ケムステ版・ノーベル化学賞候補者リスト【2019年版】
  6. Actinophyllic Acidの全合成
  7. ビニグロールの全合成
  8. 半導体・センシング材料に応用可能なリン複素環化合物の誘導体化

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ニュースタッフ参加
  2. 世界初 ソフトワーム用自発光液 「ケミホタルペイント」が発売
  3. アッペル反応 Appel Reaction
  4. 脱芳香化反応を利用したヒンクデンチンAの不斉全合成
  5. 有機硫黄ラジカル触媒で不斉反応に挑戦
  6. 三菱化学グループも石化製品を値上げ、原油高で価格転嫁
  7. ゴードン会議に参加して:ボストン周辺滞在記 PartI
  8. マクファディン・スティーヴンス反応 McFadyen-Stevens Reaction
  9. 緑色蛍光タンパク質を真似してRNAを光らせる
  10. これからの研究開発状況下を生き抜くための3つの資質

関連商品

注目情報

注目情報

最新記事

有機合成化学協会誌2019年11月号:英文版特集号

有機合成化学協会が発行する有機合成化学協会誌、2019年11月号がオンライン公開されました。…

製品開発職を検討する上でおさえたい3つのポイント

基礎研究と製品開発は、目的や役割がそれぞれ異なります。しかし、求人情報の応募要件を見てみると「〇〇の…

二刀流のホスフィン触媒によるアトロプ選択的合成法

不斉付加環化反応による新奇アリールナフトキノン合成法が報告された。2つの機能を有する不斉ホスフィン触…

ヒドロゲルの新たな力学強度・温度応答性制御法

第230回のスポットライトリサーチは、東京農工大学大学院工学府(村岡研究室)・石田敦也さんにお願い致…

光誘導アシルラジカルのミニスキ型ヒドロキシアルキル化反応

可視光照射条件下でのアジン類のミニスキ型ヒドロキシアルキル化反応が開発された。官能基許容性が高いため…

イオン交換が分子間電荷移動を駆動する協奏的現象の発見

第229回のスポットライトリサーチは、東京大学大学院 新領域創成科学研究科(竹谷・岡本研究室)・山下…

Chem-Station Twitter

PAGE TOP