[スポンサーリンク]

化学者のつぶやき

メトキシ基で転位をコントロール!Niduterpenoid Bの全合成

[スポンサーリンク]

ナザロフ環化に続く二度の環拡大というカスケード反応により、多環式複雑天然物niduterpenoid Bの全合成が初めて達成された。炭素骨格構築の立体化学を如何にして制御するかが今回の見所となる。

多環式化合物の合成法とNiduterpenoid B

多環式複雑天然物の効率的な骨格構築法の開発は、有機合成化学において依然として大きな挑戦である[1]。ナザロフ環化などの環化反応は、比較的単純な二、三環式骨格の構築に適しており、幅広い環状分子の合成に利用されている(図1A)。一方で、転位反応は、C–C結合の切断と形成による環の再編成を可能にし、複雑な架橋構造や、融合環系、スピロ環系の構築に活用できる[2–4]。2022年、蘭州大学のTuらは、これら二つの方法を巧みに組み合わせたカスケード反応を開発した[4]。1,3-ジシクロブチリデンアセトンのナザロフ環化に続く転位反応を経て、二度の環拡大により、5/5/5員環からなる三環式骨格の一段階での構築を可能とした[4]。この効率的な多環式骨格合成法により、(±)-waihoensene、phomopseneなどの複雑な天然物の合成が実現している。
今回Tuらは、この合成法を最大限活用し、エストロゲン受容体αの拮抗阻害剤であるniduterpenoid B(1)の全合成に挑んだ(図 1B)。1は、複数の隣接する四級炭素と剛直な五員環をもつ四環性骨格(テトラキナン骨格)(A–D環)と3/5二環性骨格(E–F環)から構成され、13の不斉炭素を含む非常に複雑な構造をもつ。著者らは、このカスケード反応を用いることで、テトラキナン骨格を効率的に構築できると考えた。しかし、1のもつ多数の不斉炭素のために環構築の際には高立体選択的なC–C結合の再形成が必要となる。では、著者らは如何にして、このカスケード反応における立体制御の課題を克服したのであろうか。

図1. (A) カスケード反応による5/5/5三環式骨格の構築 (B) Niduterpenoid B全合成への挑戦

 

Total Synthesis of the Hexacyclic Sesterterpenoid Niduterpenoid B via Structural Reorganization Strategy
Xue, Y.; Hou, S.-H.; Zhang, X.; Zhang,F.-M.; Zhang, X.-M.; Tu, Y.-Q. Am. Chem. Soc. 2024, 146, 25445–25450.
DOI: 10.1021/jacs.4c09555

論文著者の紹介

研究者: Yong-Qiang Tu (涂永强) (研究室HP)
研究者の経歴:
1982                                                   B.Sc., Lanzhou University, China
1989                       Ph.D., Lanzhou University, China (Prof. Yao-Zu Chen)
1993–1995          Postdoc, University of Queensland, Australia (Prof. William Kitching)
1995–                     Professor, Lanzhou University, China
研究内容:タンデム転位反応、生理活性天然物の合成研究、C–H結合活性化によるC–C結合およびC–N結合の構築
研究者: Si-Hua Hou (侯四化) (研究室HP)
研究者の経歴:
2010                                                   B.Sc., Lanzhou University, China
2015                       Ph.D., Lanzhou University, China (Prof. Yong-Qiang Tu)
2015–2017          Postdoc, Shanghai Jiao Tong University, China (Prof. Shu-Yu Zhang)
2017–2021          Postdoc, The University of Chicago, USA (Prof. Guangbin Dong)
2021–                     Associate professor, Shanghai Jiao Tong University, China
研究内容:生物活性天然物の不斉合成と合成法研究、天然薬物分子のスケール合成、創薬研究

論文の概要

図2に1の合成経路を示す。著者らは、シクロペンタジエン(2)と酸塩化物3から生じたケテンの付加環化反応を含む5工程でジエノン4を合成した。次にCSA、4ÅMS存在下、4にトリス(ペンタフルオロフェニル)ボランを作用させることで、ナザロフ環化と二度の環拡大によるカスケード反応を進行させ、目的の5を優先的に得た。この反応における立体選択性を制御する鍵となるのは、C16位に導入されたメトキシ基の非共有電子対とC16–C8結合のσ*軌道との相互作用である。この相互作用によりC16–C8結合のHOMOのエネルギーが上昇し、C15位の空のp軌道とのエネルギー差が縮小するため、C16–C8結合が優先的に転位する。続く二度目の環拡大とメタノールの脱離により立体選択的に5が生成された。このようなメトキシ基の戦略的な導入により、カスケード反応における転位の巧みな立体制御が可能となり、通常の立体選択性を逆転させることに成功し、望みの5が主生成物として得られた。その後、6工程で変換したジアゾケトン6に[Rh(OAc)2]2触媒を作用させると、立体障害の小さいconvex面からシクロプロパン化が進行し、高ジアステレオ選択的に7が導かれた。続く5工程を経て、1の全合成が達成された。

図2. Niduterpenoid Bの全合成

 

以上、ジエノンのナザロフ環化に続く二度の環拡大によるカスケード反応を鍵として、niduterpenoid Bの全合成が初めて達成された。メトキシ基の戦略的な導入によりカスケード反応における転位が巧みに立体制御され、5/5/5/5/3/5六環式骨格の迅速な構築が可能となった。

参考文献

  1. (a) Nicolaou, K. C.; Vourloumis, D.; Winssinger, N.; Baran, P. S. The Art and Science of Total Synthesis at the Dawn of the Twenty-First Century. Angew, Chem., Int. Ed. 2000, 39, 44–122. DOI: 10.1002/(SICI)1521-3773(20000103)39:1<44::AID-ANIE44>3.0.CO;2-L (b) Brill, Z. G.; Condakes, M. L.; Ting, C. P.; Maimone, T. J. Navigating the Chiral Pool in the Total Synthesis of Complex Terpene Natural Products. Chem. Rev. 2017, 117, 11753–11795. DOI: 10.1021/acs.chemrev.6b00834 (c) Zhang, X.-M.; Tu, Y.-Q.; Zhang, F.-M.; Chen, Z.-H.; Wang, S.-H. Recent Applications of the 1,2-Carbon Atom Migration Strategy in Complex Natural Product Total Synthesis. Chem. Soc. Rev. 2017, 46, 2272–2305. DOI: 10.1039/C6CS00935B (d) Dibrell, S. E.; Tao, Y.; Reisman, S. E. Synthesis of Complex Diterpenes: Strategies Guided by Oxidation Pattern Analysis. Acc. Chem. Res. 2021, 54, 1360–1373. DOI: 10.1021/acs.accounts.0c00858
  2. Wang, Y.; Gui, J. Bioinspired Skeletal Reorganization Approach for the Synthesis of Steroid Natural Products. Acc. Chem. Res. 2024, 57. 568–579. DOI: 10.1021/acs.accounts.3c00716
  3. Sun, D.; Chen, R.; Tang, D.; Xia, Q.; Zhao, Y.; Liu, C.-H.; Ding, H. Total Synthesis of (−)-Retigeranic Acid A: A Reductive Skeletal Rearrangement Strategy. J. Am. Chem. Soc. 2023, 145, 11927–11932. DOI: 10.1021/jacs.3c03178
  4. (a) Wang, Y.-P.; Fang, K.; Tu, Y.-Q.; Yin, J.-J.; Zhao, Q.; Ke, T. An Efficient Approach to Angular Tricyclic Molecular Architecture via Nazarov-like Cyclization and Double Ring-Expansion Cascade. Nat Commun. 2022, 13, 2335. DOI: 1038/s41467-022-29947-5 (b) Yin, J.-J.; Wang, Y.-P.; Xue, J.; Zhou, F.-F.; Shan, X.-Q.; Zhu, R.; Fang, K.; Shi, L.; Zhang, S.-Y.; Hou, S.-H.; Xia, W.; Tu, Y.-Q. Total Syntheses of Polycyclic Diterpenes Phomopsene, Methyl Phomopsenonate, and Iso -Phomopsene via Reorganization of C–C Single Bonds. J. Am. Chem. Soc. 2023, 145, 21170–21175. DOI: 10.1021/jacs.3c07044 (c) Fang, K.; Dou, B.-H.; Zhang, F.-M.; Wang, Y.-P.; Shan, Z.-R.; Wang, X.-Y.; Hou, S.-H.; Tu, Y.; Ding, T.-M. Expansion of Structure Property in Cascade Nazarov Cyclization and Cycloexpansion Reaction to Diverse Angular Tricycles and Total Synthesis of Nominal Madreporanone. Angew. Chem., Int. Ed. 2024, 63, XXX–XXX. DOI: 10.1002/anie.202412337
  5. Li, Q.; Chen, C.; Wei, M.; Dai, C.; Cheng, L.; Tao, J.; Li, X.-N.; Wang, J.; Sun, W.; Zhu, H.; Zhang, Y. Niduterpenoids A and B: Two Sesterterpenoids with a Highly Congested Hexacyclic 5/5/5/5/3/5 Ring System from the Fungus Aspergillus Nidulans. Org. Lett. 2019, 21, 2290–2293. DOI: 10.1021/acs.orglett.9b00581
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 有機合成化学協会誌2019年5月号:特集号 ラジカル種の利用最前…
  2. システインから無機硫黄を取り出す酵素反応の瞬間を捉える
  3. 優れた研究者は優れた指導者
  4. タンパク質リン酸化による液-液相分離制御のしくみを解明 -細胞内…
  5. アルデヒドを分液操作で取り除く!
  6. STAP細胞問題から見えた市民と科学者の乖離ー後編
  7. 燃えないカーテン
  8. ケムステ主催バーチャルシンポジウム「最先端有機化学」を開催します…

注目情報

ピックアップ記事

  1. かぶれたTシャツ、原因は塩化ジデシルジメチルアンモニウム
  2. 密閉容器や培養液に使える酸素計を使ってみた!
  3. 第43回―「均質ナノ粒子の合成と生命医学・触媒への応用」Taeghwan Hyeon教授
  4. 【予告】ケムステ新コンテンツ「元素の基本と仕組み」
  5. 国際化学オリンピック、日本の高校生4名「銀」獲得
  6. カガクをつなげるインターネット:サイエンスアゴラ2017
  7. 入江 正浩 Masahiro Irie
  8. マテリアルズ・インフォマティクスにおける分子生成の応用 ー新しい天然有機化合物の生成を目指すー
  9. エルゼビアからケムステ読者に特別特典!
  10. MEXT-JST 元素戦略合同シンポジウム ~元素戦略研究の歩みと今後~

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2025年2月
 12
3456789
10111213141516
17181920212223
2425262728  

注目情報

最新記事

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

細谷 昌弘 Masahiro HOSOYA

細谷 昌弘(ほそや まさひろ, 19xx年xx月xx日-)は、日本の創薬科学者である。塩野義製薬株式…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP