[スポンサーリンク]

化学者のつぶやき

そこのB2N3、不対電子いらない?

[スポンサーリンク]

ヘテロ原子のみから成る環(完全ヘテロ原子環)π非局在型ラジカル種の合成が達成された。ジボラトリアゾールの一電子還元により達成された完全ヘテロ原子環のπ非局在化ラジカルアニオン種は、カルベンを付加するだけで、中性ラジカルへと誘導できる。

完全ヘテロ原子環をもつラジカル化合物

ラジカル化学種は不対電子をもち、その特殊な物理化学的性質から反応化学や材料科学の分野において重要な役割を担っている。これまで膨大な数のラジカル種が研究されてきた一方で、完全ヘテロ原子環を骨格とするラジカル種は限られている[1,2]。例えば1は、環状ホウ素骨格ラジカルとして最初に報告された(図1A)[3]2はホウ素とリンを含む一重項ジラジカルである[4]3は四中心五電子結合をもつ[5]。これらのラジカル種の不対電子は、σ軌道もしくはp軌道に局在化している。しかし、より高い安定性が予測されるπ非局在型の完全ヘテロ原子環ラジカルの合成は達成されていない。
近年、金城らはπ共役系をもつ完全ヘテロ原子環であるジボラトリアゾールの合成を報告した。ジボラトリアゾール4は、1,2-ジボラアレンとアジドのHuisgen環化によって生成する(図1B)[6]4は不安定であるが、TMSClの付加によって安定な5へと導くことができる[7]
今回、金城らはジボラトリアゾール5の酸化還元挙動に着目し、ラジカル化学種への変換が可能であると考えた。検証の結果、ジボラトリアゾール5を一電子還元することにより、不対電子がπ非局在化したラジカルアニオン6の合成に成功した(図1C)。また、6はカルベン付加に伴い塩が脱離し、中性ラジカル7へと誘導できることを見いだした。その知見をもとに、相互作用の弱い二つの不対電子を分子内に有するディス-ビラジカル8の合成に成功した[8]

図1. (A) 完全ヘテロ原子環ラジカル (B) ジボラトリアゾール5の合成 (C) 5のラジカル種への変換

 

“Crystalline Radical Anion of a Diboratriazole and Its Conversion to a Neutral Radical Driven by a Carbene”
Zhu, L.; Feng, Z.; Kinjo, R. J. Am. Chem. Soc. 2024, 146, 20945–20950.
DOI: 10.1021/jacs.4c05777

論文著者の紹介

研究者:金城 玲
研究者の経歴:
2002                                                    B.Sc., University of Tsukuba, Japan (Prof. Akira Sekiguchi)
2005                                                    M.Sc., University of Tsukuba, Japan (Prof. Akira Sekiguchi)
2007                                                   Ph.D., University of Tsukuba, Japan (Prof. Akira Sekiguchi)
2007–2011                Postdoc, University of California, Riverside, USA (Prof. Guy Bertrand)
2011–2017                Assistant Professor, Nanyang Technological University, Singapore
2017–2020                Associate Professor, Nanyang Technological University, Singapore
2020–                                               Professor, Nanyang Technological University, Singapore

研究内容:p-ブロック元素を含む新規分子の創出と、それらを触媒とした反応の開発

論文の概要

著者らは、ジボラトリアゾール5のラジカル種への変換を試みた(図2A)。ベンゼン中、5にKC8を作用させ、一電子還元によってラジカルアニオン6に誘導した。また、6に対してカルベンMe2-bimyを加えると、塩(KCl)が脱離したラジカル7を得た。6から7への変換は、金属を用いずにラジカルアニオンから中性ラジカルを合成した世界初の例である[9]
得られた6および7における不対電子のπ共役系への非局在化を確認するため、X線結晶構造解析とEPR測定を行った。まずX線結晶構造解析から、67のジボラトリアゾール骨格における結合長を調査した(図2B)。2つのB–N結合長は、1,2-アザボリン類のもつ非局在化したB–N結合長と同等である(図2B)[10]。B–B結合長は、含ホウ素芳香族ラジカル種のB–B結合長より短い[11]。2つのN–N結合長は、いずれも典型的なN–N単結合より短い[12]。これらの結合長から、ジボラトリアゾールにおけるπ共役系の保持が示された。また、67のEPR測定では、ピークの分裂より、不対電子が4つの窒素原子と2つのホウ素原子との間で相互作用していることが観測された(図2C)。以上の結果から、67において不対電子のπ共役系への非局在化が確かめられた。
6とカルベンの反応から中性ラジカルが得られたため、6へのビスカルベンの付加によってディス-ビラジカルが生成すると考えた。実際に2当量のラジカルアニオン6にビスカルベンを作用させた結果、ディス-ビラジカル8を収率22%で与えた(図2D)。DFT計算より、8が開殻一重項基底状態を取り、三重項状態とのエネルギー差ΔEOS–Tがきわめて小さいことが分かった。また、8の基底状態と三重項状態でのスピン密度が、二つのジボラトリアゾール部位に均一に分布していることが明らかとなった。これらのデータは、8がディス-ビラジカルであることを支持している。

図2. (A) ジボラトリアゾール骨格をもつラジカル種の合成 (B) X線構造、結合長 (C) EPRスペクトル (D) 6のディス-ビラジカル8への変換

以上、不対電子がπ共役系に非局在化した完全ヘテロ原子環ラジカル種の合成が報告された。安定なジボラトリアゾールラジカルをもとに、ヘテロ原子ラジカルのさらなる物性解明が期待される。

参考文献

  1. Chen, Z. X.; Li, Y.; Huang, F. Persistent and Stable Organic Radicals: Design, Synthesis, and Applications. Chem 2021, 7, 288–332. DOI: 1016/j.chempr.2020.09.024
  2. Feng, Z.; Tang, S.; Su, Y.; Wang, X. Recent Advances in Stable Main Group Element Radicals: Preparation and Characterization. Chem. Soc. Rev. 2022,51, 5930–5973. DOI: 10.1039/d2cs00288d
  3. Klusik, H.; Berndt, A. The Radical Anion from Tetra-t-butyltetraborane(4), a New Route to t-Bu4B4. J. Organomet. Chem. 1982, 234, C17–C19. DOI: 10.1016/s0022-328x(00)85859-3
  4. Scheschkewitz, D.; Amii, H.; Gornitzka, H.; Schoeller, W. W.; Bourissou, D.; Bertrand, G. Singlet Diradicals: From Transition States to Crystalline Compounds. Science 2002, 295, 1880–1881. DOI: 1126/science.1068167
  5. Litters, S.; Kaifer, E.; Himmel, H. A Radical Tricationic Rhomboid Tetraborane(4) with Four‐Center, Five‐Electron Bonding. Angew. Chem., Int. Ed. 2016, 55, 4345–4347. DOI: 10.1002/anie.201600296
  6. Zhu, L.; Kinjo, R. An Inorganic Huisgen Reaction Between a 1,2‐Diboraallene and an Azide to Access a Diboratriazole. Angew. Chem., Int. Ed. 2022, 61, e202207631. DOI: 10.1002/anie.202207631
  7. Zhu, L.; Kinjo, R. Crystalline 2π Aromatic Azadiboriridinylium: A BN Analogue of Cyclopropenylium Cation.Angew. Chem., Int. Ed. 2023, 62, e202312949. DOI: 10.1002/anie.202312949
  8. Hinz, A.; Bresien, J.; Breher, F.; Schulz, A. Heteroatom-Based Diradical(oid)s. Chem. Rev. 2023, 123, 10468–10526. DOI: 10.1021/acs.chemrev.3c00255
  9. Su, Y.; Kinjo, R. Boron-Containing Radical Species. Chem. Rev. 2017, 352, 346–378. DOI: 10.1016/j.ccr.2017.09.019
  10. Abbey, E. R.; Zakharov, L. N.; Liu, S.-Y. Crystal Clear Structural Evidence for Electron Delocalization in 1,2-Dihydro-1,2-azaborines. J. Am. Chem. Soc.2008, 130, 7250–7252. DOI: 10.1021/ja8024966
  11. Seufert, J.; Welz, E.; Krummenacher, I.; Paprocki, V.; Böhnke, J.; Hagspiel, S.; Dewhurst, R. D.; Tacke, R.; Engels, B.; Braunschweig, H. Isolation and Characterization of Crystalline, Neutral Diborane(4) Radicals. Angew. Chem., Int. Ed. 2018, 57, 10752–10755. DOI: 10.1002/anie.201804048
  12. Collin, R. L.; Lipscomb, W. N. The Crystal Structure of Hydrazine. Acta Crystallogr. 1951, 4, 10–14. DOI: 1107/s0365110x51000027
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 室温で緑色発光するp型/n型新半導体を独自の化学設計指針をもとに…
  2. コンパクトで革新的な超純水製造システム「アリウム」
  3. 世界最高の活性を示すアンモニア合成触媒の開発
  4. 歯車の回転数は、当てる光次第 -触媒量のDDQ光触媒で行うベンゼ…
  5. 工程フローからみた「どんな会社が?」~半導体関連
  6. 沖縄科学技術大学院大学(OIST) 教員公募
  7. 歯車クラッチを光と熱で制御する分子マシン
  8. 文具に凝るといふことを化学者もしてみむとてするなり⑫:「コクヨの…

注目情報

ピックアップ記事

  1. ゲイリー・モランダー Gary A. Molander
  2. 小林製薬、「神薬」2種類を今春刷新
  3. 位置・立体選択的に糖を重水素化するフロー合成法を確立 ― Ru/C触媒カートリッジで150時間以上の連続運転を実証 ―
  4. 化学かるた:元素編ー世界化学年をちなみ
  5. 「第22回 理工系学生科学技術論文コンクール」の応募を開始
  6. クリスマス化学史 元素記号Hの発見
  7. トムソン:2006年ノーベル賞の有力候補者を発表
  8. 鉄錯体による触媒的窒素固定のおはなし-1
  9. ビス(アセトニトリル)パラジウム(II)ジクロリド : Dichlorobis(acetonitrile)palladium(II)
  10. 製造過程に発がん性物質/テフロンで米調査委警告

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年12月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

【太陽ホールディングス】新卒採用情報(2027卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

欧米化学メーカーのR&D戦略について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、欧米化…

有馬温泉でラドン泉の放射線量を計算してみた【化学者が行く温泉巡りの旅】

有馬温泉は、日本の温泉で最も高い塩分濃度を持ち黄褐色を呈する金泉と二酸化炭素と放射性のラドンを含んだ…

アミンホウ素を「くっつける」・「つかう」 ~ポリフルオロアレーンの光触媒的C–Fホウ素化反応と鈴木・宮浦カップリングの開発~

第684回のスポットライトリサーチは、名古屋工業大学大学院工学研究科(中村研究室)安川直樹 助教と修…

第56回ケムステVシンポ「デバイスとともに進化する未来の化学」を開催します!

第56回ケムステVシンポの会告を致します。3年前(32回)・2年前(41回)・昨年(49回)…

骨粗鬆症を通じてみる薬の工夫

お久しぶりです。以前記事を挙げてから1年以上たってしまい、時間の進む速さに驚いていま…

インドの農薬市場と各社の事業戦略について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、インド…

【味の素ファインテクノ】新卒採用情報(2027卒)

当社は入社時研修を経て、先輩指導のもと、実践(※)の場でご活躍いただきます。…

味の素グループの化学メーカー「味の素ファインテクノ社」を紹介します

食品会社として知られる味の素社ですが、味の素ファインテクノ社はその味の素グループ…

味の素ファインテクノ社の技術と社会貢献

味の素ファインテクノ社は、電子材料の分野において独創的な製品を開発し、お客様の中にイノベーションを起…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP