[スポンサーリンク]

化学者のつぶやき

鉄触媒での鈴木-宮浦クロスカップリングが実現!

[スポンサーリンク]

 

Iron-Catalyzed Suzuki-Miyaura Coupling of Alkyl Halides
Hatakeyama,T.; Hashimoto, T.; Kondo, Y.; Fujiwara, Y.; Seike,H.; Takaya, H.; Tamada, Y.; Ono, T.; Nakamura, M. J. Am. Chem. Soc. 2010, 132, 10674. doi:10.1021/ja103973a

数ある人名反応の中でも群を抜いて実用性が高く、世界で最も幅広く使われている反応―それが鈴木-宮浦クロスカップリングです。

取り扱い容易なホウ素化合物を用い、炭素骨格形成が行える優れた反応ですが、唯一にして最大の欠点は、高価かつ毒性のあるパラジウム触媒を必要としてしまうこと。
しかし近年の先端的研究によって、安価な鉄触媒がその代替となることが示されつつあります。鉄触媒で鈴木クロスカップリングが自在に行えれば、これはまさしく非の打ち所が無い反応そのものになりえます。

このたび、京都大学の中村正治グループによって、そのような理想的化学変換への道が見事切り開かれました。


成功のキーポイントとなったのは以下の3点、すなわち

①かさ高いジホスフィンリガンドと塩化鉄(II)を錯形成させ、高スピン錯体を生成させる
②ボレート形成目的に有機金属種を用いる
③添加剤としてMg(II)塩を加える

ということです。

①について

かさ高い置換基を持ったジホスフィンとの錯形成によって、上図(論文より引用)のように鉄中心がひずんだ四面体配位状態をとること、高スピン状態(S=2)が生じることが、X線構造および各種分析によって確認されています。

酸化的付加における実際の活性種は独自の知見が得られており、有機基が二つトランスメタル化した配位不飽和ジアリール鉄錯体であると考えられています[1]。ラジカルクロックたるシクロプロピル基を有する基質では開環体が主に得られること、アルキルハライド根元の立体は消失してしまうこと(下スキーム参照)などから、アルキルハライドと鉄は高スピン錯体ならではのラジカル的機構で反応していくことが示唆されています。

Fe_suzuki_miyaura_2

②について

鈴木・宮浦カップリング条件では通常、ホウ素試薬をトランスメタル化活性なボレートへと変換してやる必要があります。
多くの場合この目的にはフッ素アニオンやアルコキシド、カーボネートなどのハード塩基が用いられるのですが、この場合は鉄自体がハード金属であるために干渉が起こってしまうとのこと。

そこで彼らは一工夫凝らして、有機アルキルリチウムもしくはアルキルGrignard試薬を加えてボレートにしています。
こういった工夫は一般的ではないにしろ、以前から知られてはいます。もちろん実用性は確実に低下してしまいますが・・・開拓的な原初報告なので、ここに文句をつけるのは適切では無いでしょう。

素人としては、宮浦先生が開発したトリオールボレートなんかを使えばどうなるのかな、などと思ったり・・・おそらくは試しているのでしょうけど。

 

③について

ボレート→鉄へのトランスメタル化は遅く、ここでもひと工夫が必要になったようです。マグネシウム塩の添加が効果的だったとのことですが、その詳細についてはクリアには述べられていません。
鉄錯体はかさ高いリガンドをもつ物がよい結果を与える、ということを考え合わせてみるに、鉄錯体のaggregateをほぐし活性な鉄錯体の生成を助けるような効果が、ひょっとしたらあるのかもしれません(TurboGrignard試薬におけるLiClの添加効果のような感じ?)。

もし直接的にトランスメタル化を加速するとして、一度マグネシウム上に有機基が乗ってしまうメカニズムなのだとすれば、結局Grignard試薬経由と本質的に変わらないのでは・・・?とも一見思えます。
しかしその突っ込み関してはどうやら想定内のようでして、ボレート+マグネシウム塩の条件ではGrignard試薬が出ないことをNMRで確認、またGrignard試薬と反応するような官能基(ケトンやエステルなど)をもつ化合物でも、それを侵さず反応が進行することが示されています。

この点については、今後の研究によって詳細の解明が進むことを期待します。

以上総合して、このような触媒サイクルが提唱されております(論文より転載)。

Fe_suzuki_miyaura_4論文のテーブルやSupporting Infoを眺めてみると、初期検討段階でほとんどStarting Material Recoveryのようで、ほんのちょっとでも反応の進行する系が見つかるまでが、本当に大変だったのではないかと想像します。基質によっても細かく反応条件が違いますし、おそらく相当量の泥臭い実験が裏に隠れているのは間違いないでしょう。実際に手を動かされた方々には、本当にお疲れ様でしたと言いたいです。

しかし鉄触媒のクロスカップリング化学は、まだスタートラインに立ったばかりです。今後さらなる改善が施され、使いやすいものになっていくことを、いち合成化学者としてリアルタイムに眺めていたいと思います。

 

関連文献

  1. Noda,D.; Sunada,Y.;  Hatakeyama,T.; Nakamura,M.; Nagashima, H. J. Am. Chem. Soc. 2009, 131, 6078. DOI: 10.1021/ja901262g

 

外部リンク

 

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 第45回BMSコンファレンス参加者募集
  2. イボレノリドAの単離から全合成まで
  3. アルケンとニトリルを相互交換する
  4. 硫黄―炭素二重結合の直接ラジカル重合~さまざまなビニルポリマーに…
  5. 光照射による有機酸/塩基の発生法:①光酸発生剤について
  6. リンだ!リンだ!ホスフィン触媒を用いたメチルアミノ化だ!
  7. 化学者のためのエレクトロニクス入門③ ~半導体業界で活躍する化学…
  8. 「新反応開発:結合活性化から原子挿入まで」を聴講してみた

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 分子内架橋ポリマーを触媒ナノリアクターへ応用する
  2. ケムステイブニングミキサー2018ー報告
  3. Pfizer JAK阻害薬tofacitinib承認勧告
  4. 新たな要求に応えるために発展するフッ素樹脂の接着・接合技術
  5. 虫歯とフッ素のお話① ~どうして歯磨きにフッ素が使われるの??~
  6. 複雑にインターロックした自己集合体の形成機構の解明
  7. トロンボキサンA2 /Thromboxane A2
  8. 電池長寿命化へ、充電するたびに自己修復する電極材
  9. UV-Visスペクトルの楽しみ方
  10. ポンコツ博士の海外奮闘録⑦〜博士,鍵反応を仕込む〜

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2010年7月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

十全化学株式会社ってどんな会社?

私たち十全化学は、医薬品の有効成分である原薬及び重要中間体の製造受託を担っている…

化学者と不妊治療

これは理系の夫視点で書いた、私たち夫婦の不妊治療の体験談です。ケムステ読者で不妊に悩まれている方の参…

リボフラビンを活用した光触媒製品の開発

ビタミン系光触媒ジェンタミン®は、リボフラビン(ビタミンB2)を活用した光触媒で…

紅麹を含むサプリメントで重篤な健康被害、原因物質の特定急ぐ

健康食品 (機能性表示食品) に関する重大ニュースが報じられました。血中コレステ…

ユシロ化学工業ってどんな会社?

1944年の創業から培った技術力と信頼で、こっそりセカイを変える化学屋さん。ユシロ化学の事業内容…

日本薬学会第144年会付設展示会ケムステキャンペーン

日本化学会の年会も終わりましたね。付設展示会キャンペーンもケムステイブニングミキ…

ペプチドのN末端でのピンポイント二重修飾反応を開発!

第 605回のスポットライトリサーチは、中央大学大学院 理工学研究科 応用化学専…

材料・製品開発組織における科学的考察の風土のつくりかた ー マテリアルズ・インフォマティクスを活用し最大限の成果を得るための筋の良いテーマとは ー

開催日:2024/03/27 申込みはこちら■開催概要材料開発を取り巻く競争や環境が激し…

石谷教授最終講義「人工光合成を目指して」を聴講してみた

bergです。この度は2024年3月9日(土)に東京工業大学 大岡山キャンパスにて開催された石谷教授…

リガンド効率 Ligand Efficiency

リガンド効率 (Ligand Efficacy: LE) またはリガンド効率指数…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP