[スポンサーリンク]

化学者のつぶやき

鉄触媒での鈴木-宮浦クロスカップリングが実現!

[スポンサーリンク]

 

Iron-Catalyzed Suzuki-Miyaura Coupling of Alkyl Halides
Hatakeyama,T.; Hashimoto, T.; Kondo, Y.; Fujiwara, Y.; Seike,H.; Takaya, H.; Tamada, Y.; Ono, T.; Nakamura, M. J. Am. Chem. Soc. 2010, 132, 10674. doi:10.1021/ja103973a

数ある人名反応の中でも群を抜いて実用性が高く、世界で最も幅広く使われている反応―それが鈴木-宮浦クロスカップリングです。

取り扱い容易なホウ素化合物を用い、炭素骨格形成が行える優れた反応ですが、唯一にして最大の欠点は、高価かつ毒性のあるパラジウム触媒を必要としてしまうこと。
しかし近年の先端的研究によって、安価な鉄触媒がその代替となることが示されつつあります。鉄触媒で鈴木クロスカップリングが自在に行えれば、これはまさしく非の打ち所が無い反応そのものになりえます。

このたび、京都大学の中村正治グループによって、そのような理想的化学変換への道が見事切り開かれました。


成功のキーポイントとなったのは以下の3点、すなわち

①かさ高いジホスフィンリガンドと塩化鉄(II)を錯形成させ、高スピン錯体を生成させる
②ボレート形成目的に有機金属種を用いる
③添加剤としてMg(II)塩を加える

ということです。

①について

かさ高い置換基を持ったジホスフィンとの錯形成によって、上図(論文より引用)のように鉄中心がひずんだ四面体配位状態をとること、高スピン状態(S=2)が生じることが、X線構造および各種分析によって確認されています。

酸化的付加における実際の活性種は独自の知見が得られており、有機基が二つトランスメタル化した配位不飽和ジアリール鉄錯体であると考えられています[1]。ラジカルクロックたるシクロプロピル基を有する基質では開環体が主に得られること、アルキルハライド根元の立体は消失してしまうこと(下スキーム参照)などから、アルキルハライドと鉄は高スピン錯体ならではのラジカル的機構で反応していくことが示唆されています。

Fe_suzuki_miyaura_2

②について

鈴木・宮浦カップリング条件では通常、ホウ素試薬をトランスメタル化活性なボレートへと変換してやる必要があります。
多くの場合この目的にはフッ素アニオンやアルコキシド、カーボネートなどのハード塩基が用いられるのですが、この場合は鉄自体がハード金属であるために干渉が起こってしまうとのこと。

そこで彼らは一工夫凝らして、有機アルキルリチウムもしくはアルキルGrignard試薬を加えてボレートにしています。
こういった工夫は一般的ではないにしろ、以前から知られてはいます。もちろん実用性は確実に低下してしまいますが・・・開拓的な原初報告なので、ここに文句をつけるのは適切では無いでしょう。

素人としては、宮浦先生が開発したトリオールボレートなんかを使えばどうなるのかな、などと思ったり・・・おそらくは試しているのでしょうけど。

 

③について

ボレート→鉄へのトランスメタル化は遅く、ここでもひと工夫が必要になったようです。マグネシウム塩の添加が効果的だったとのことですが、その詳細についてはクリアには述べられていません。
鉄錯体はかさ高いリガンドをもつ物がよい結果を与える、ということを考え合わせてみるに、鉄錯体のaggregateをほぐし活性な鉄錯体の生成を助けるような効果が、ひょっとしたらあるのかもしれません(TurboGrignard試薬におけるLiClの添加効果のような感じ?)。

もし直接的にトランスメタル化を加速するとして、一度マグネシウム上に有機基が乗ってしまうメカニズムなのだとすれば、結局Grignard試薬経由と本質的に変わらないのでは・・・?とも一見思えます。
しかしその突っ込み関してはどうやら想定内のようでして、ボレート+マグネシウム塩の条件ではGrignard試薬が出ないことをNMRで確認、またGrignard試薬と反応するような官能基(ケトンやエステルなど)をもつ化合物でも、それを侵さず反応が進行することが示されています。

この点については、今後の研究によって詳細の解明が進むことを期待します。

以上総合して、このような触媒サイクルが提唱されております(論文より転載)。

Fe_suzuki_miyaura_4論文のテーブルやSupporting Infoを眺めてみると、初期検討段階でほとんどStarting Material Recoveryのようで、ほんのちょっとでも反応の進行する系が見つかるまでが、本当に大変だったのではないかと想像します。基質によっても細かく反応条件が違いますし、おそらく相当量の泥臭い実験が裏に隠れているのは間違いないでしょう。実際に手を動かされた方々には、本当にお疲れ様でしたと言いたいです。

しかし鉄触媒のクロスカップリング化学は、まだスタートラインに立ったばかりです。今後さらなる改善が施され、使いやすいものになっていくことを、いち合成化学者としてリアルタイムに眺めていたいと思います。

 

関連文献

  1. Noda,D.; Sunada,Y.;  Hatakeyama,T.; Nakamura,M.; Nagashima, H. J. Am. Chem. Soc. 2009, 131, 6078. DOI: 10.1021/ja901262g

 

外部リンク

 

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 光/熱で酸化特性のオン/オフ制御が可能な分子スイッチの創出に成功…
  2. 留学せずに英語をマスターできるかやってみた(5年目)(留学中編)…
  3. ナノチューブを引き裂け! ~物理的な意味で~
  4. とあるカレイラの天然物〜Pallambins〜
  5. レビュー多すぎじゃね??
  6. 第98回日本化学会春季年会 付設展示会ケムステキャンペーン Pa…
  7. 室温、中性条件での二トリルの加水分解
  8. 層状複水酸化物のナノ粒子化と触媒応用

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 芳香族化合物のスルホン化 Sulfonylation of Aromatic Compound
  2. TEMPOよりも高活性なアルコール酸化触媒
  3. ルーベン・マーティン Ruben Martin
  4. ルーブ・ゴールドバーグ反応 その1
  5. 速報! ノーベル物理学賞2014日本人トリプル受賞!!
  6. マイクロ波合成装置の最先端!
  7. 白リン / white phosphorus
  8. 多摩霊園
  9. ボールマン・ラーツ ピリジン合成 Bohlmann-Rahtz Pyridine Synthesis
  10. 第84回―「トップ化学ジャーナルの編集者として」Anne Pichon博士

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2010年7月
« 6月   8月 »
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

注目情報

最新記事

こんなのアリ!?ギ酸でヒドロカルボキシル化

可視光レドックス触媒によるギ酸を炭素源としたヒドロカルボキシル化が開発された。チオール触媒を介したラ…

ポンコツ博士研究員の海外奮闘録 ケムステ異色連載記

本稿は,世間一般にほとんど知られていない地方私立大学で学位を修了し,エリートでもなく何も成し遂げてい…

新型コロナの飲み薬モルヌピラビルの合成・生体触媒を用いた短工程化

新型コロナウイルス (SARS-CoV-2) 感染症に対する飲み薬として、Merck…

秋吉一成 Akiyoshi Kazunari

秋吉 一成(あきよしかずなり)は日本の有機化学者である。京都大学大学院 工学研究科 高分子化学専攻 …

NIMS WEEK2021-材料研究の最新成果発表週間- 事前登録スタート

時代を先取りした新材料を発信し続けるNIMS。その最新成果を一挙ご紹介する、年に一度の大イベント「N…

元素記号に例えるなら何タイプ? 高校生向け「起業家タイプ診断」

今回は化学の本質とは少し離れますが、元素をモチーフにしたあるコンテンツをご紹介します。実験の合間…

多価不飽和脂肪酸による光合成の不活性化メカニズムの解明:脂肪酸を活用した光合成活性の制御技術開発の可能性

第346回のスポットライトリサーチは、東京大学 大学院総合文化研究科(和田・神保研究…

10手で陥落!(+)-pepluanol Aの全合成

高度な縮環構造をもつ複雑天然物ペプラノールAの全合成が、わずか10工程で達成された。Diels–Al…

吉野彰氏が2021年10月度「私の履歴書」を連載。

今年の10月はノーベル化学賞が有機化学分野から出て、物理学賞を真鍋淑郎先生が受賞して、非常に盛り上が…

ガラス工房にお邪魔してみたー匠の技から試験管制作体験までー

実験器具を試して見たシリーズ第10弾! ついにシリーズ10回目を迎えました。今回は特別編です…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP