[スポンサーリンク]

ケムステしごと

味の素ファインテクノの技術と社会貢献

[スポンサーリンク]

味の素ファインテクノは、電子材料や機能材料を軸に独創的な製品を開発し、世界の技術発展に貢献しています。

高速ネットワーク通信5G、人口知能AI、自動運転システム等、新しい技術が続々と生まれている情報テクノロジー分野では、層間絶縁材料として味の素ビルドアップフィルム®(ABF)が世界中で使用されています。

他にも、スマートフォン等のカメラモジュール製造プロセスに使用される一液型低温硬化性接着剤 プレンセット®や潜在性硬化剤 アミキュア®、液晶ディスプレイのカラーフィルターやIJインキでの顔料分散に使用される高分子型分散剤 アジスパー®等、独自性のある製品を開発してきました。また、アミノ酸、食品、飲料の精製に使用される選択的吸着機能を有する活性炭や吸着樹脂の開発、製品化も進めています。

また、次世代テクノロジーに必要とされる導電材料、磁性材料、透明ガスバリア材料等の高機能材料の研究開発にも積極的に取り組み、新たな提案を行っています。

層間絶縁材料 味の素ビルドアップフィルム®(ABF)

層間絶縁材料 味の素ビルドアップフィルム®(ABF)

当社の主力製品である味の素ビルドアップフィルム®(ABF)について御紹介します。

身近な例では、私たちが普段使用しているパソコンやスマートフォンの中には電子回路基板があり、演算処理や画像処理の頭脳であるCPU(Central Processing Unit)やGPU(Graphics Processing Unit)が搭載されています。

CPUやGPUの断面を見るとICチップとマザーボードの間に、パッケージ基板というICチップの保護及びマザーボードへの信号伝達の役割を担う部品があります。このパッケージ基板の断面をさらに覗いてみると、ICチップの信号を伝達するため回路が複数層にわたり形成されています。この回路間には絶縁性を保つために層間絶縁材料が必要となりますが、ここに用いられているのが当社の味の素ビルドアップフィルム®(ABF)です。

パッケージ基板の製造プロセスに Innovation !!

パッケージ基板の製造プロセスに Innovation !!

 

1990年代、パッケージ基板にはセラミック材料が使用されていました。しかし、値段が高く、大きく重かったため、パソコン自体も高価で大きなものとなり、普及が十分には進みませんでした。これを打開するためインキタイプの有機材料を使用したパッケージ基板の開発が行われましたが大きな問題がありました。

インキの印刷プロセスでは、配線の表面にインキを印刷し乾燥させて溶剤を揮発させた後、さらに基板を反転して裏面にも同様の処理をするため、一層毎の製造工程が非常に多くなってしまいます。また、平滑性が悪いため絶縁層の上に新しい配線を形成できません。有害な溶剤の揮発、配線間への気泡残りといった課題も存在しました。

これらの問題を解決するために考案されたのが、フィルム材料を使用したラミネートプロセスです。インキの代わりにフィルムを用いることで、配線に対して両面から同時にフィルムを貼りつける非常に簡単な工程となります。また、表面の平滑性を改善することで、上方向に配線を積み上げることを可能にしました。さらに、溶剤臭気や気泡混入の問題も解決することが可能となります。

当社は独自の分子設計・配合設計の技術を駆使することで、このプロセスに適合したフィルム材料を他社に先駆けて開発、製品化し、お客様の工程数の大幅削減を実現するというイノベーションを起こしました。こうして誕生したのが層間絶縁材料の市場においてトップシェアを誇る味の素ビルドアップフィルム®(ABF)です。現在ではパソコン、スマートフォン、タブレットからサーバー、高速通信システムに至るまで、進化が著しい情報化社会に欠かせない材料として世界中で御愛顧頂いています。

情報テクノロジーの急速な進歩、電子機器の高機能化、小型化に伴い、電子回路配線の微細化、高集積化が進んでいます。このため層間絶縁材には、高い表面平滑性と高い銅密着性の両立が必要となります。
また高速通信分野では、電気信号の高周波数化により誘電損失による電気エネルギーのロスが大きな問題となり、これを抑制するため、配線と接する層間絶縁材には誘電率、誘電正接が低いことが求められます。

お客様との連携の下、高度な要求に応えた技術を迅速に開発し、味の素ビルドアップフィルム®(ABF) GXシリーズ、GZ シリーズ、GL シリーズ等を製品化してきました。

我々は、既存のものとは根本的に異なる材料の開発によって、単なる改良ではないイノベーションを世の中に提供することを心掛けています。
そして、今後も歩みを止めることなく、世の中のテクノロジーの進歩、社会発展に役立つ独自の技術を創造し提案し続けます。

我々と一緒にイノベーションを興していきましょう!

高度な要求への迅速対応

関連リンク

webmaster

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. 2010年日本化学会年会を楽しむ10の方法
  2. サイエンスアゴラの魅力を聞く-「iCeMS」水町先生
  3. 可視光で芳香環を立体選択的に壊す
  4. ストックホルム国際青年科学セミナー参加学生を募集開始 ノーベル賞…
  5. ハメット則
  6. 【PR】 Chem-Stationで記事を書いてみませんか?【ス…
  7. 化学Webギャラリー@Flickr 【Part1】
  8. 落葉の化学~「コロ助の科学質問箱」に捧ぐ

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 反応機構を書いてみよう!~電子の矢印講座・その1~
  2. 透明なカニ・透明な紙:バイオナノファイバーの世界
  3. Dead Endを回避せよ!「全合成・極限からの一手」⑨ (解答編)
  4. 複雑な試薬のChemDrawテンプレートを作ってみた
  5. ショウリョウバッタが吐くアレについて
  6. 富大工学部実験研究棟で火事
  7. ゲイリー・モランダー Gary A. Molander
  8. トムソン:2005年ノーベル賞の有力候補者を発表
  9. 水分解 water-splitting
  10. 機械的力で Cu(I) 錯体の発光強度を制御する

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

「つける」と「はがす」の新技術|分子接合と表面制御 R3

開講期間令和3(2021)年  9月8日(水)、9日(木)(計2日間)※状況により、we…

第19回ケムステVシンポ「化学者だって起業するっつーの」を開催します!

少し前に化学者のつぶやきからこのような記事が出ました:【ケムステSlackに訊いて見た④】化学系学生…

10種類のスパチュラを試してみた

大好評、「試してみた」シリーズの第6弾。今回は試薬の秤量にか欠かせない、…

第48回「分子の光応答に基づく新現象・新機能の創出」森本 正和 教授

久々の研究者へのインタビューです。第48回は、立教大学の森本正和先生にお願いいたしました。第17回ケ…

畠山琢次 Takuji Hatakeyama

畠山琢次 (はたけやま たくじ)は、日本の化学者である。専門は有機合成化学,材料化学。2021年現在…

DNA origami入門 ―基礎から学ぶDNAナノ構造体の設計技法―

(さらに…)…

NBSでのブロモ化に、酢酸アンモニウムをひとつまみ

芳香環のブロモ化といえば、構造活性相関の取得はもちろんの事、カップリング反応の足場と…

森本 正和 Masakazu Morimoto

森本 正和(もりもと まさかず、MORIMOTO Masakazu)は、日本の化学者である。専門は有…

Chem-Station Twitter

PAGE TOP