[スポンサーリンク]

ケムステしごと

味の素ファインテクノ社の技術と社会貢献

[スポンサーリンク]

味の素ファインテクノ社は、電子材料の分野において独創的な製品を開発し、お客様の中にイノベーションを起すことで、社会の発展に貢献しています。

高速ネットワーク通信5G、人口知能AI、自動運転システムなど、新しい技術が続々と生まれている情報テクノロジー分野に用いられる半導体パッケージ基板の層間絶縁材料として、味の素ビルドアップフィルム®(ABF)が世界中で使用されています。

他にも、スマートフォンなどのカメラモジュール製造に使用される一液型低温硬化性接着剤 プレーンセット®や潜在性硬化剤 アミキュア®、液晶ディスプレイのカラーフィルターやインクジェットプリンターのインキ中で色顔料を均一に分散する高分子型分散剤 アジスパー®など、これまでの多くの独自性・先進性のある製品の開発をしてきました。また、アミノ酸、食品、飲料の精製に使用される選択的吸着機能を有する活性炭や、様々な不純物を吸着する吸着樹脂の開発、製品化も進めています。

また、世の中に先駆けて、次世代のテクノロジーに必要とされる高機能素材の研究開発にも取り組み、新技術をもとに新事業の創成を行っております。そして我々は事業の創出とその拡大を通じて、省エネルギー、CO2削減などの社会課題の解決をも図っていきます。

このような社会価値の創出と、イノべ-ションを通じて製品を市場に供給して収益を上げる経済価値の創出、これら2つの価値を両立させる取り組み「味の素グループシェアードバリュー(Ajinomoto group Shared Value)」を実現していきます。

層間絶縁材料 味の素ビルドアップフィルム®(ABF)

層間絶縁材料 味の素ビルドアップフィルム®(ABF)

 

当社の主力製品である味の素ビルドアップフィルム®(ABF)について紹介します。

身近な例では、私たちが普段使用しているパソコンやスマートフォンの中には電子回路基板(以下、「半導体パッケージ基板」という)があり、演算処理や画像処理の頭脳であるCPU(Central Processing Unit)やGPU(Graphics Processing Unit)が搭載されています。

CPUやGPUの断面を見るとICチップとマザーボードの間に、半導体パッケージ基板というICチップの保護及びマザーボードへの信号伝達の役割を担う基板があります。この基板の断面をさらに覗いてみると、ICチップの多くの信号を適切にマザーボードに伝達するため回路が複数層にわたり形成されています。この回路間の絶縁性を保つために層間絶縁材料が必要であり、ここに用いられているのが当社の味の素ビルドアップフィルム®(ABF)です。

半導体パッケージ基板の製造プロセスに Innovation

パッケージ基板の製造プロセスに Innovation !!

 

元々、半導体パッケージ基板は熱安定性が高く、絶縁層が絶縁性に優れたセラミックが使われていましたが、1990年代のインターネットの普及とパソコンが一家に一台となる時代を迎えるにあたって、セラミックの場合、基板製造のコストが高い、小型化に向いていないという課題があり、普及が十分には進みませんでした。これを打開するため、絶縁層にインキタイプの有機材料を適用するという業界の動きの中で、再び大きな問題が発生しました。

インキの印刷プロセスでは、配線の表面にインキを塗布し乾燥させて溶剤を揮発させた後、さらに基板を反転して裏面にも同様に塗布・乾燥をするため、一層毎の製造工程が非常に多くなってしまいます。また、塗布した樹脂の平滑性が悪いため、絶縁層の上に新しい配線の形成が難しいこと、そして、有害な溶剤の揮発、配線間への気泡残りといった課題も存在しました。

これらの問題を解決するために考案されたのが、「フィルム材料」と「ラミネートプロセス」の組み合わせです。接着フィルムを用いることで、配線板に対して上下両側から同時にフィルムを貼りつける非常に簡単な工程となります。更に、ラミネートプロセスにより、表面の平滑性を改善でき、多段に配線層を積み上げることが可能となり、溶剤臭気や気泡混入の問題も同時に解決しました。

当社独自の分子設計・配合設計の技術を駆使することで、このプロセスに適合し、お客様の要求を満たすフィルム材料を他社に先駆けて開発、製品化し、お客様の工程数の大幅削減を実現するというイノベーションを起こしました。こうして誕生した味の素ビルドアップフィルム®(ABF)は、層間絶縁材料の市場においてトップシェアを誇っています。

現在ではパソコン、スマートフォン、タブレットからサーバー、高速通信システムに至るまで、進化が著しい情報化社会に欠かせない材料として世界中でご使用いただいております。

情報テクノロジーの急速な進歩、電子機器の高機能化、小型化に伴い、電子回路配線の微細化、高集積化が進んでいます。これを実現するに半導体パッケージ基板では、①微細配線の形成、②高速信号のロス低減が求められます。層間絶縁材料としては、①に対して、高い表面平滑性、高い銅密着性の両立、②に対して、誘電損失を下げることが求められます。これら要求事項に迅速に応えるべく、当社技術を融合し、他の技術入れ込んで、味の素ビルドアップフィルム®(ABF)の GXシリーズ、GZ シリーズ、GL シリーズなどを製品化してきました。

我々は、お客様の実現したい事柄に目標を置くことで、それに至る最良の道を選んで開発を進めます。それが、既存技術の延長、新技術の開発になるのかは問いません。単なる改良ではないイノベーションを世の中に提供することを心掛けています。

そして、今後も歩みを止めることなく、世の中のテクノロジーの進歩、社会発展に役立つ独自の技術を創造し、提案し続けます。

2022年11月14日更新

関連リンク

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. 創発型研究のススメー日本化学会「化学と工業:論説」より
  2. モリブデンのチカラでニトロ化合物から二級アミンをつくる
  3. ありふれた試薬でカルボン酸をエノラート化:カルボン酸の触媒的α-…
  4. 学生実験・いまむかし
  5. ケムステイブニングミキサー2015を終えて
  6. 合成手法に焦点を当てて全合成研究を見る「テトロドトキシン~その1…
  7. 第94回日本化学会付設展示会ケムステキャンペーン!Part II…
  8. おまえら英語よりもタイピングやろうぜ ~中級編~

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 第4回慶應有機化学若手シンポジウム
  2. 第99回―「配位子設計にもとづく研究・超分子化学」Paul Plieger教授
  3. 2009年ノーベル化学賞『リボソームの構造と機能の解明』
  4. 2005年9-10月分の気になる化学関連ニュース投票結果
  5. 城戸 淳二 Junji Kido
  6. 有機化学美術館が来てくれました
  7. 新規重水素化触媒反応を開発―医薬品への直接重水素導入を達成―
  8. メラトニン melatonin
  9. ヒノキチオール (hinokitiol)
  10. C-CN結合活性化を介したオレフィンへの触媒的不斉付加

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年12月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

注目情報

最新記事

小山 靖人 Yasuhito Koyama

小山 靖人(こやま やすひと)は、日本の有機化学者。富山県立大学工学部医薬品工学…

ポンコツ博士の海外奮闘録XIV ~博士,釣りをする~

シリーズ累計20話!!タイトルの○数字がなくなりました。節々の回は出来る限り実験ネタや個人的なグッと…

定型抗精神病薬 「ピモジド」の化学修飾により新規難治性疼痛治療薬として極めて有望な化合物の創製に成功

第445回のスポットライトリサーチは、近畿大学大学院 薬学研究科 薬学専攻 病態薬理学研究室の笠波 …

【好評につきリピート開催】マイクロ波プロセスのスケールアップ〜動画で実証設備を紹介!〜 ケミカルリサイクル、乾燥炉、ペプチド固相合成、エステル交換、凍結乾燥など

<内容>マイクロ波プロセスのスケールアップがどのように実現されるか、実証設備の動画も交えてご紹介…

三井化学、DXによる企業変革の成果を動画で公開

三井化学株式会社は、常務執行役員 CDO 三瓶 雅夫による、三井化学グループ全社でのDX推進の取り組…

消光団分子の「ねじれ」の制御による新たな蛍光プローブの分子設計法の確立

第444回のスポットライトリサーチは、東京大学薬学部/大学院薬学系研究科 薬品代謝化学教室に在籍され…

マテリアルズ・インフォマティクスの手法:条件最適化に用いられるベイズ最適化の基礎

開催日:2022/11/30  申込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

製薬系企業研究者との懇談会

日本薬学会医薬化学部会にある創薬ニューフロンティア(NF)検討会は,「学生のモチベーションやキャリア…

電子1個の精度で触媒ナノ粒子の電荷量を計測

第443回のスポットライトリサーチは、九州大学大学院工学研究院エネルギー量子工学部門 超顕微解析研究…

ハットする間にエピメリ化!Pleurotinの形式合成

天然物Pleurotinの形式合成が報告された。可視光による光エノール化/Diels–Alder反応…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP