[スポンサーリンク]

ケムステしごと

味の素ファインテクノ社の技術と社会貢献

[スポンサーリンク]

味の素ファインテクノ社は、電子材料の分野において独創的な製品を開発し、お客様の中にイノベーションを起すことで、社会の発展に貢献しています。

高速ネットワーク通信5G、人口知能AI、自動運転システムなど、新しい技術が続々と生まれている情報テクノロジー分野に用いられる半導体パッケージ基板の層間絶縁材料として、味の素ビルドアップフィルム®(ABF)が世界中で使用されています。

他にも、スマートフォンなどのカメラモジュール製造に使用される一液型低温硬化性接着剤 プレーンセット®や潜在性硬化剤 アミキュア®、液晶ディスプレイのカラーフィルターやインクジェットプリンターのインキ中で色顔料を均一に分散する高分子型分散剤 アジスパー®など、これまでの多くの独自性・先進性のある製品の開発をしてきました。また、アミノ酸、食品、飲料の精製に使用される選択的吸着機能を有する活性炭や、様々な不純物を吸着する吸着樹脂の開発、製品化も進めています。

また、世の中に先駆けて、次世代のテクノロジーに必要とされる高機能素材の研究開発にも取り組み、新技術をもとに新事業の創成を行っております。そして我々は事業の創出とその拡大を通じて、省エネルギー、CO2削減などの社会課題の解決をも図っていきます。

このような社会価値の創出と、イノべ-ションを通じて製品を市場に供給して収益を上げる経済価値の創出、これら2つの価値を両立させる取り組み「味の素グループシェアードバリュー(Ajinomoto group Shared Value)」を実現していきます。

層間絶縁材料 味の素ビルドアップフィルム®(ABF)

層間絶縁材料 味の素ビルドアップフィルム®(ABF)

 

当社の主力製品である味の素ビルドアップフィルム®(ABF)について紹介します。

身近な例では、私たちが普段使用しているパソコンやスマートフォンの中には電子回路基板(以下、「半導体パッケージ基板」という)があり、演算処理や画像処理の頭脳であるCPU(Central Processing Unit)やGPU(Graphics Processing Unit)が搭載されています。

CPUやGPUの断面を見るとICチップとマザーボードの間に、半導体パッケージ基板というICチップの保護及びマザーボードへの信号伝達の役割を担う基板があります。この基板の断面をさらに覗いてみると、ICチップの多くの信号を適切にマザーボードに伝達するため回路が複数層にわたり形成されています。この回路間の絶縁性を保つために層間絶縁材料が必要であり、ここに用いられているのが当社の味の素ビルドアップフィルム®(ABF)です。

半導体パッケージ基板の製造プロセスに Innovation

パッケージ基板の製造プロセスに Innovation !!

 

元々、半導体パッケージ基板は熱安定性が高く、絶縁層が絶縁性に優れたセラミックが使われていましたが、1990年代のインターネットの普及とパソコンが一家に一台となる時代を迎えるにあたって、セラミックの場合、基板製造のコストが高い、小型化に向いていないという課題があり、普及が十分には進みませんでした。これを打開するため、絶縁層にインキタイプの有機材料を適用するという業界の動きの中で、再び大きな問題が発生しました。

インキの印刷プロセスでは、配線の表面にインキを塗布し乾燥させて溶剤を揮発させた後、さらに基板を反転して裏面にも同様に塗布・乾燥をするため、一層毎の製造工程が非常に多くなってしまいます。また、塗布した樹脂の平滑性が悪いため、絶縁層の上に新しい配線の形成が難しいこと、そして、有害な溶剤の揮発、配線間への気泡残りといった課題も存在しました。

これらの問題を解決するために考案されたのが、「フィルム材料」と「ラミネートプロセス」の組み合わせです。接着フィルムを用いることで、配線板に対して上下両側から同時にフィルムを貼りつける非常に簡単な工程となります。更に、ラミネートプロセスにより、表面の平滑性を改善でき、多段に配線層を積み上げることが可能となり、溶剤臭気や気泡混入の問題も同時に解決しました。

当社独自の分子設計・配合設計の技術を駆使することで、このプロセスに適合し、お客様の要求を満たすフィルム材料を他社に先駆けて開発、製品化し、お客様の工程数の大幅削減を実現するというイノベーションを起こしました。こうして誕生した味の素ビルドアップフィルム®(ABF)は、層間絶縁材料の市場においてトップシェアを誇っています。

現在ではパソコン、スマートフォン、タブレットからサーバー、高速通信システムに至るまで、進化が著しい情報化社会に欠かせない材料として世界中でご使用いただいております。

情報テクノロジーの急速な進歩、電子機器の高機能化、小型化に伴い、電子回路配線の微細化、高集積化が進んでいます。これを実現するに半導体パッケージ基板では、①微細配線の形成、②高速信号のロス低減が求められます。層間絶縁材料としては、①に対して、高い表面平滑性、高い銅密着性の両立、②に対して、誘電損失を下げることが求められます。これら要求事項に迅速に応えるべく、当社技術を融合し、他の技術入れ込んで、味の素ビルドアップフィルム®(ABF)の GXシリーズ、GZ シリーズ、GL シリーズなどを製品化してきました。

我々は、お客様の実現したい事柄に目標を置くことで、それに至る最良の道を選んで開発を進めます。それが、既存技術の延長、新技術の開発になるのかは問いません。単なる改良ではないイノベーションを世の中に提供することを心掛けています。

そして、今後も歩みを止めることなく、世の中のテクノロジーの進歩、社会発展に役立つ独自の技術を創造し、提案し続けます。

2024年10月24日更新

関連リンク

Avatar photo

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. リンだ!リンだ!ホスフィン触媒を用いたメチルアミノ化だ!
  2. 世界初!反転層型ダイヤMOSFETの動作実証に成功
  3. 2002年ノーベル化学賞『生体高分子の画期的分析手法の開発』
  4. 光分解性シアニン色素をADCのリンカーに組み込む
  5. 化学研究ライフハック: Evernoteで論文PDFを一元管理!…
  6. C-H結合活性化を経るラクトンの不斉合成
  7. 有機合成化学協会誌2018年8月号:触媒的不斉全合成・分子ロータ…
  8. 留学せずに英語をマスターできるかやってみた(7年目)(留学後編)…

注目情報

ピックアップ記事

  1. 分取薄層クロマトグラフィー PTLC (Preparative Thin-Layer Chromatography)
  2. 色素・樹脂材料処方設計におけるマテリアルズ・インフォマティクスの活用とは?
  3. 超微量紫外可視分光光度計に新型登場:NanoDrop One
  4. ジボラン(diborane)
  5. 企業における研究開発の多様な目的
  6. サンギ、バイオマス由来のエタノールを原料にガソリン代替燃料
  7. モナリザの新たな秘密が化学分析によって判明
  8. 国際化学オリンピック2023が開催:代表チームへの特別インタビュー
  9. 佐藤 一彦 Kazuhiko Sato
  10. 三菱ケミカルのサステナビリティに関する取り組み

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年12月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

有機合成化学協会誌2025年6月号:カルボラン触媒・水中有機反応・芳香族カルボン酸の位置選択的変換・C(sp2)-H官能基化・カルビン錯体

有機合成化学協会が発行する有機合成化学協会誌、2025年6月号がオンラインで公開されています。…

【日産化学 27卒】 【7/10(木)開催】START your ChemiSTORY あなたの化学をさがす 研究職限定 Chem-Talks オンライン大座談会

現役研究者18名・内定者(26卒)9名が参加!日産化学について・就職活動の進め方・研究職のキャリアに…

データ駆動型生成AIの限界に迫る!生成AIで信頼性の高い分子設計へ

第663回のスポットライトリサーチは、横浜市立大学大学院 生命医科学研究科(生命情報科学研究室)博士…

MDSのはなし 骨髄異形成症候群とそのお薬の開発状況 その2

Tshozoです。前回はMDSについての簡易な情報と歴史と原因を述べるだけで終わってしまったので…

水-有機溶媒の二液相間電子伝達により進行する人工光合成反応

第662回のスポットライトリサーチは、京都大学 大学院工学研究科 物質エネルギー化学専攻 阿部竜研究…

ケムステイブニングミキサー 2025 報告

3月26日から29日の日本化学会第105春季年会に参加されたみなさま、おつかれさまでした!運営に…

【テーマ別ショートウェビナー】今こそ変革の時!マイクロ波が拓く脱炭素時代のプロセス革新

■ウェビナー概要プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波…

予期せぬパラジウム移動を経る環化反応でベンゾヘテロールを作る

1,2-Pd移動を含む予期せぬ連続反応として進行することがわかり、高収率で生成物が得られた。 合…

【27卒】太陽HD研究開発 1day仕事体験

太陽HDでの研究開発職を体感してみませんか?私たちの研究活動についてより近くで体験していただく場…

熱がダメなら光当てれば?Lugdunomycinの全合成

光化学を駆使した、天然物Lugdunomycinの全合成が報告された。紫外光照射による異性化でイソベ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP