[スポンサーリンク]

化学者のつぶやき

シビれる(T T)アジリジン合成

[スポンサーリンク]

電気化学的に不活性アルケンと一級アミンをカップリングさせることで、Nアルキルアジリジンが合成された。本反応はアルケンとチアントレン(TT)の付加体を鍵中間体として進行する。

N-置換アジリジン合成法の進化

N-置換アジリジンは、環歪みに由来する高い反応性から、多種の含窒素化合物の合成前駆体となる[1]

その合成法はイミンへのカルベンの付加や2-アミノアルコールの分子内環化など、数多く知られる(図1A)[2]。なかでもアルケンへのナイトレンの付加は、膨大な化学フィードストックであるアルケンとアミンを利用できる点で有用である。しかし、既存の方法では両基質に制限があった。

例えば、遷移金属触媒により金属ナイトレノイドを発生させる手法が知られるが、強酸化条件のため、電子求引基で置換されたアミンを必要とした(図1B-i)[2]。近年、電解酸化法が注目される。Yudinらによる初の報告では、酸化容易なN-アミノフタルイミド(PhthNH2)が必要であった(図1B-ii)[3a]。その後Chengらは、スルファマートを窒素源とすることで三置換アジリジンの合成に成功した[3b]。これらの例はアミンの置換基が制限されるが、最近Noëlらによって克服された[3c]。しかし、利用可能なアルケンは電子豊富なスチレン誘導体に限られた。

本論文著者のWickensらは、アルケンの酸化を誘発させる活性種を用いれば、不活性アルケンがアジリジン合成に利用できると考えた(図1C)。実際に、チアントレン(TT)を用いたところ、アルケンにTTが付加した化学種がジカチオン等価体として機能することを見いだした。TT付加体は一級アミンとの置換反応によりN-アルキルアジリジンを与える。

図1. A. N-置換アジリジンの合成法 B. アルケンへのナイトレンの付加の先行研究 i) 遷移金属触媒を用いる手法 ii) 電解酸化法 C. 本研究

 

Aziridines by Coupling Amines and Alkenes via an Electro-Generated Dication

Holst, D. E.; Wang, D. J.; Kim, M. J.; Guzei, I. A.; Wickens, Z. K.Nature 2021, 596, 74-79.

DOI: 10.1038/s41586-021-03717-7

論文著者の紹介

研究者:Zachary K. Wickens

研究者の経歴:
2006–2010                  B.A., Macalester College, USA
2010–2015                  Ph.D., California Institute of Technology, USA (Prof. Robert H. Grubbs)
2015–2018                  NIH Postdoctoral Fellow, Harvard University, USA (Prof. Eric N. Jacobsen)
2018–                             Assistant Professor, University of Wisconsin–Madison, USA

研究内容:電気化学、光化学

論文の概要

筆者らは、アルケン1とチアントレン(TT)を電解酸化したのち、炭酸セシウムと一級アミン2を加えることで、N-アルキルアジリジン3が得られることを見いだした(図2A)。

本反応は市販の安価な一級アルキルアミンに適用でき、酸化に不安定なヘテロ環をもつ3を高収率で与えた(3a, 3b)。求核性部位をもつエタノールアミンを用いても反応は問題なく進行した。さらに、ニトリル(3d)、エステル(3e)を含むオレフィンも利用できた。本反応は気体のプロペンにも適用でき、ファイザー社の医薬品前駆体3fが収率82%で得られた。

本反応の魅力は広範な基質適用範囲に限らない。グラムスケールでのフロー合成により、中程度の収率で3gを得た(図2B-i)。また、今回提唱された戦略はアジリジン合成以外に、アルケンのジハロゲン化にも展開できた(図2B-ii)(4a, 4b)。

鍵中間体のTT付加体は次の機構で得られると推定された(図2C)。

まずTTが一電子酸化されてTT+を与える。TT+はラジカル機構で1に捕捉され、ビス付加体が生成する。同時にTT+TTとの不均化によりTT2+を与え、これが1へ付加することでモノ付加体も与える。

図2. A. 基質適用範囲 B. 応用例 i) グラムスケール合成(図は論文より引用) ii) ジカチオンプール法の応用 C. 付加体の生成機構

 

以上、広範な置換基の導入が可能なN-アルキルアジリジンの電気化学的合成法が開発された。本法は内部アルケンには適用できないが、TTの高い反応性を利用した様々な応用展開が期待できる。

参考文献

  1. (a) Watson, I. D. G.; Yu, L.; Yudin, A. K. Advances in Nitrogen Transfer Reactions Involving Aziridines. Acc. Chem. Res. 2006, 39, 194–206. DOI: 10.1021/ar050038m (b) Minakata, S. Utilization of N−X Bonds in The Synthesis of N-Heterocycles. Acc. Chem. Res. 2009, 42, 1172–1182. DOI: 10.1021/ar900059r
  2. Jung, N.; Bräse, S. New Catalysts for the Transition‐Metal‐Catalyzed Synthesis of Aziridines. Angew. Chem., Int. Ed. 2012, 51, 5538–5540. DOI: 10.1002/anie.201200966
  3. (a) Siu, T.; Yudin, A. K. Practical Olefin Aziridination with a Broad Substrate Scope. J. Am. Chem. Soc. 2002, 124, 530–531. DOI: 10.1021/ja0172215(b) Li, J.; Huang, W.; Chen, J.; He, L.; Cheng, X.; Li, G. Electrochemical Aziridination by Alkene Activation Using a Sulfamate as the Nitrogen Source. Angew. Chem., Int. Ed. 2018, 57, 5695–5698. DOI: 10.1002/anie.201801106 (c) Ošeka, M.; Laudadio, G.; Leest, N. P. van; Dyga, M.; Bartolomeu, A. de A.; Gooßen, L.; de Bruin, B.; de Oliveira, K. T.; Noël, T. Electrochemical Aziridination of Internal Alkenes with Primary Amines. Chem 2020. DOI: 10.1016/j.chempr.2020.12.002
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 二重芳香族性を示す化合物の合成に成功!
  2. 化学の学びと研究に役立つiPhone/iPad app 9選
  3. アメリカの大学院で受ける授業
  4. 先端の質量分析:GC-MSおよびLC-MSデータ処理における機械…
  5. アンモニアの安全性あれこれ
  6. 有機合成化学協会誌2025年4月号:リングサイズ発散・プベルル酸…
  7. 工程フローからみた「どんな会社が?」~半導体関連
  8. 研究室でDIY!ELSD検出器を複数のLCシステムで使えるように…

注目情報

ピックアップ記事

  1. 50年来の謎反応を解明せよ
  2. ニッケル錯体触媒の電子構造を可視化
  3. 論説フォーラム「グローバル社会をリードする化学者になろう!!」
  4. 異分野交流のススメ:ヨーロッパ若手研究者交流会参加体験より
  5. 学振申請書を磨き上げるポイント ~自己評価欄 編(前編)~
  6. ペイン転位 Payne Rearrangement
  7. 光学迷彩をまとう海洋生物―その仕組みに迫る
  8. 新コース開講! 東大発の無料オンライン英語講座!
  9. 持続可能性社会を拓くバイオミメティクス
  10. ベンザイン Benzyne

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年10月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP