[スポンサーリンク]

化学者のつぶやき

2Dから3Dに:ジラジカルを用いたベンゼノイドの骨格編集

[スポンサーリンク]

エネルギー移動によるベンゼノイドの脱芳香族的骨格編集反応が報告された。ジラジカル前駆体としてNアシルイミンを用いることで、高い化学選択性、位置選択性、ジアステレオ選択性を有する多環式骨格を構築した。

光を用いた脱芳香族的分子間環化付加反応

ベンゼノイドは芳香族性を示す安定な化合物群であり、その変換反応の大多数は芳香環上のC–HやC–X結合の官能基化である(図1A)[1]。一方、脱芳香族的分子間環化付加反応は、2次元の芳香族化合物を3次元の多環式骨格へ変換できる特徴的な反応である[2]。このような平面構造から3次元骨格への変換は、創薬研究において、医薬品の物性の改善や標的分子との相互作用向上のための、重要な戦略として位置付けられている[3]

近年、エネルギー移動を利用する光触媒反応が精力的に開発されている。可視光を利用した脱芳香族的分子間環化付加反応も多数報告され、これまでに(ヘテロ)縮合環の”オルト”、”メタ”、”パラ”付加体の合成が達成された(図1B)[4]。しかし、脱芳香族化の対象は、主にベンゼン環と比較して芳香族性の低い(ヘテロ)縮合環に限られる。また、これらの脱芳香族的分子間環化付加反応では、原料由来の炭素骨格は変化しない。

今回、著者らはベンゼノイドの光誘起型ブフナー環拡大反応と環化付加反応を組み合わせた骨格編集反応を開発し、複雑な多環式骨格の合成に成功した(図1C)。本反応では、ブフナー環拡大を利用することで新規炭素骨格を合成することが可能になった。

図1. (A) ベンゼノイドの反応 (B) (ヘテロ)縮合環の光誘起脱芳香族的環化付加反応 (C) ジラジカルを用いたベンゼノイドの脱芳香族的骨格編集反応

 

“Dearomative Skeletal Editing of Benzenoids via Diradical”

Zhang, X-X.; Xu, S-T.; Li, X-T.; Song, T-T.; Ji, D-W.; Chen, Q-A. J. Am. Chem. Soc. 2025, 147, 11533–11542.

DOI: 10.1021/jacs.5c01983

論文著者の紹介

研究者:Qing-An Chen (陈庆安)

研究者の経歴:

2003–2007                                       B.S., University of Science and Technology of China, China (Prof. Tian-Pa You)
2007–2012                                       Ph.D., Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China (Prof. Yong-Gui Zhou)
2012–2015                                       Postdoc, University of California, Irvine, USA (Prof. Vy M. Dong)
2015–2017                                       Postdoc, Technische Universität Berlin, Germany (Prof. Martin Oestreich)
2017–                                                  Professor, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China
研究内容:不斉触媒反応、生体模倣化学、グリーンケミストリー

論文の概要

アセトニトリル中、有機光触媒PC-1存在下、N-アシルイミン1aとアルキン2Aに対して塩化亜鉛(II)を添加し、紫色光(390 nm)を照射すると、良好な収率で多環式骨格3aAを与えた(図2A)。本反応は、複素環やアルキル基、電子豊富な芳香環を有するN-アシルイミン(3b3d)に適用でき、対応する多環式骨格3Aaを化学・位置選択的に与えた。また、アルキンもプロピオラート2Aだけでなく、プロパルギルケトン2Bや末端アルキン2Cが利用できる。加えて、多環式骨格3を種々誘導体化することにも成功した(詳細は本文参照)。

次に、著者らは機構解明実験に着手した(図2B)。紫外可視吸光測定においてPC-1のみ紫色光を吸収した。この結果から、1a2aの直接励起や電荷移動錯体の形成が否定された。また、シュテルン–フォルマー消光実験では、励起したPC-11aにより消光されることが確認できた。また、2,5-ジメチルヘキサ-2,4-ジエンなどの三重項消光剤やDMPO、TEMPOなどのラジカル補足剤が反応を阻害したことから、本反応はエネルギー移動機構で進行しラジカルが関与することが⽰唆された。アルキン2Aを加えずにN-アシルイミン1dを最適条件に付すと、対応するシクロヘプタトリエン7を与えた。さらに、72A存在下最適条件で反応させると、対応する多環式骨格3dAの合成に成功した。そのほか、反応追跡やDFT計算などにより、本反応がジラジカルを経由するエネルギー移動機構で進行していることが支持された(詳細は本文参照)。

図2. (A) 最適条件と基質適用範囲 (B) 機構解明実験 (論文から引用)

 

以上、光を用いた脱芳香族的環拡大反応と[6+2]環化付加反応を組み合わせた、ベンゼノイドの新たな骨格編集反応が報告された。複雑な多環式骨格を効率的に合成可能な脱芳香族的骨格編集反応のさらなる発展に期待したい。

参考文献

  1.  (a) Wang, C.-S.; Dixneuf, P. H.; Soulé, J.-F. Photoredox Catalysis for Building C−C Bonds from C(Sp2)−H Bonds. Chem. Rev. 2018, 118, 7532−7585. DOI: 10.1021/acs.chemrev.8b00077 (b) Wang, H.; Gao, X.; Lv, Z.; Abdelilah, T.;Lei, A. RecentAdvances in Oxidative R1-H/R2-HCross-Coupling with Hydrogen Evolution Via Photo-/Electrochemistry. Chem. Rev. 2019, 119, 6769−6787. DOI: 10.1021/acs.chemrev.9b00045 (c) Wang, J.; Dong, G. Palladium/Norbornene Cooperative Catalysis. Chem. Rev. 2019, 119, 7478−7528. DOI: 10.1021/acs.chemrev.9b00079 (d) Shi, J.; Li, L.; Li, Y. O-Silylaryl Triflates: A Journey of Kobayashi Aryne Precursors. Chem. Rev. 2021, 121, 3892−4044. DOI: 10.1021/acs.chemrev.0c01011
  2. (a) Roche, S. P.; Porco, J. A. Dearomatization Strategies in the Synthesis of Complex Natural Products. Angew. Chem., Int. Ed. 2011, 50, 4068−4093. DOI: 10.1002/anie.201006017 (b) Zhuo, C. X.; Zhang, W.; You, S. L. Catalytic Asymmetric Dearomatization Reactions. Angew. Chem., Int. Ed. 2012, 51, 12662−12686. DOI: 10.1002/anie.201204822 (c) Wertjes, W. C.; Southgate, E. H.; Sarlah, D. Recent Advances in Chemical Dearomatization of Nonactivated Arenes. Chem. Soc. Rev. 2018, 47, 7996−8017. DOI: 10.1039/C8CS00389K (d) Huck, C. J.; Sarlah, D. Shaping Molecular Landscapes: Recent Advances, Opportunities, and Challenges in Dearomatization. Chem. 2020, 6, 1589−1603.DOI: 10.1016/j.chempr.2020.06.015 (e) Bird, C. W. The Relationship of Classical and Magnetic Criteria of Aromaticity. Tetrahedron 1996, 52, 9945−9952. DOI: 10.1016/0040-4020(96)00526-1
  3. (a) Lovering, F.; Bikker, J.; Humblet, C. Escape from Flatland: Increasing Saturation as an Approach to Improving Clinical Success. J. Med. Chem. 2009, 52, 6752−6756. DOI: 10.1021/jm901241e (b) Lovering, F. Escape from Flatland 2: Complexity and Promiscuity. MedChemComm 2013, 4, 515−519. DOI: 10.1039/C2MD20347B
  4. (a) Streit, U.; Bochet, C. G. The Arene−Alkene Photo-cycloaddition. Beilstein J. Org. Chem. 2011, 7, 525−542. DOI: 10.3762/bjoc.7.61 (b) Remy, R.; Bochet, C. G. Arene−Alkene Cycloaddition. Chem. Rev. 2016, 116, 9816−9849. DOI: 10.1021/acs.chemrev.6b00005 (c) Cornelisse, J. The Meta Photocycloaddition of Arenes to Alkenes. Chem. Rev. 1993, 93, 615−669. DOI: 10.1021/cr00018a002 (d) Ma, J. J.; Chen, S. M.; Bellotti, P.; Guo, R. Y.; Schäfer, F.; Heusler, A.; Zhang, X. L.; Daniliuc, C.; Brown, M. K.; Houk, K. N.; Glorius, F. Photochemical Intermolecular Dearomative Cycloaddition of Bicyclic Azaarenes with Alkenes. Science 2021, 371, 1338−1345. DOI: 10.1126/science.abg0720 (e) Guo, R.; Adak, S.; Bellotti, P.; Gao, X.; Smith, W. W.; Le, S. N.; Ma, J.; Houk, K. N.; Glorius, F.; Chen, S.; Brown, M. K. Photochemical Dearomative Cycloadditions of Quinolines and Alkenes: Scope and Mechanism Studies. J. Am. Chem. Soc. 2022, 144, 17680−17691. DOI: 10.1021/jacs.2c07726 (f) Ma, J.; Chen, S.; Bellotti, P.; Wagener, T.; Daniliuc, C.; Houk, K. N.; Glorius, F. Facile Access to Fused 2D/3D Rings via Intermolecular Cascade Dearomative [2 + 2] Cycloaddition/Rearrangement Reactions of Quinolines with Alkenes. Nat. Catal. 2022, 5, 405−413. DOI: 10.1038/s41929-022-00784-5 (g) Zhu, M.; Zhang, X.; Zheng, C.; You, S.-L. Energy-Transfer Enabled Dearomative Cycloaddition Reactions of Indoles/Pyrroles via Excited-State Aromatics. Acc. Chem. Res. 2022, 55, 2510−2525. DOI: 10.1021/acs.accounts.2c00412 (h) Li, M.; Huang, X.-L.; Zhang, Z.-Y.; Wang, Z.; Wu, Z.; Yang, H.; Shen, W.-J.; Cheng, Y.-Z.; You, S.-L. Gd(III)-Catalyzed Regio-, Diastereo-, and Enantioselective [4 + 2] Photocycloaddition of Naphthalene Derivatives. J. Am. Chem. Soc. 2024, 146, 16982−16989. DOI: 10.1021/jacs.4c05288
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 第28回光学活性化合物シンポジウム
  2. 社会に出てから大切さに気付いた教授の言葉
  3. 【無料ウェビナー】粒子分散の最前線~評価法から処理技術まで徹底解…
  4. 酸と塩基のつとめを個別に完遂した反応触媒
  5. 薬学会年会も付設展示会キャンペーンやっちゃいます
  6. 低分子医薬に代わり抗体医薬がトップに?
  7. Late-Stage C(sp3)-H活性化法でステープルペプチ…
  8. 理系で研究職以外に進んだ人に話を聞いてみた

注目情報

ピックアップ記事

  1. 論文執筆で気をつけたいこと20(1)
  2. アルツハイマー病患者の脳内から0価の鉄と銅が発見される
  3. 無限の可能性を秘めたポリマー
  4. アリルC(Sp3)-H結合の直接的ヘテロアリール化
  5. アジサイの青色色素錯体をガク片の中に直接検出!
  6. 18万匹のトコジラミ大行進 ~誘因フェロモンを求めて②~
  7. 学会に行こう!高校生も研究発表できます
  8. ラウリマライドの全合成
  9. ロータリーエバポレーターの回転方向で分子の右巻き、左巻きを制御! ―生命のホモキラリティーの起源に踏み込む―
  10. 液体中で高機能触媒として働くペロブスカイト酸化物の開発

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2025年5月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP