[スポンサーリンク]

化学者のつぶやき

2Dから3Dに:ジラジカルを用いたベンゼノイドの骨格編集

[スポンサーリンク]

エネルギー移動によるベンゼノイドの脱芳香族的骨格編集反応が報告された。ジラジカル前駆体としてNアシルイミンを用いることで、高い化学選択性、位置選択性、ジアステレオ選択性を有する多環式骨格を構築した。

光を用いた脱芳香族的分子間環化付加反応

ベンゼノイドは芳香族性を示す安定な化合物群であり、その変換反応の大多数は芳香環上のC–HやC–X結合の官能基化である(図1A)[1]。一方、脱芳香族的分子間環化付加反応は、2次元の芳香族化合物を3次元の多環式骨格へ変換できる特徴的な反応である[2]。このような平面構造から3次元骨格への変換は、創薬研究において、医薬品の物性の改善や標的分子との相互作用向上のための、重要な戦略として位置付けられている[3]

近年、エネルギー移動を利用する光触媒反応が精力的に開発されている。可視光を利用した脱芳香族的分子間環化付加反応も多数報告され、これまでに(ヘテロ)縮合環の”オルト”、”メタ”、”パラ”付加体の合成が達成された(図1B)[4]。しかし、脱芳香族化の対象は、主にベンゼン環と比較して芳香族性の低い(ヘテロ)縮合環に限られる。また、これらの脱芳香族的分子間環化付加反応では、原料由来の炭素骨格は変化しない。

今回、著者らはベンゼノイドの光誘起型ブフナー環拡大反応と環化付加反応を組み合わせた骨格編集反応を開発し、複雑な多環式骨格の合成に成功した(図1C)。本反応では、ブフナー環拡大を利用することで新規炭素骨格を合成することが可能になった。

図1. (A) ベンゼノイドの反応 (B) (ヘテロ)縮合環の光誘起脱芳香族的環化付加反応 (C) ジラジカルを用いたベンゼノイドの脱芳香族的骨格編集反応

 

“Dearomative Skeletal Editing of Benzenoids via Diradical”

Zhang, X-X.; Xu, S-T.; Li, X-T.; Song, T-T.; Ji, D-W.; Chen, Q-A. J. Am. Chem. Soc. 2025, 147, 11533–11542.

DOI: 10.1021/jacs.5c01983

論文著者の紹介

研究者:Qing-An Chen (陈庆安)

研究者の経歴:

2003–2007                                       B.S., University of Science and Technology of China, China (Prof. Tian-Pa You)
2007–2012                                       Ph.D., Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China (Prof. Yong-Gui Zhou)
2012–2015                                       Postdoc, University of California, Irvine, USA (Prof. Vy M. Dong)
2015–2017                                       Postdoc, Technische Universität Berlin, Germany (Prof. Martin Oestreich)
2017–                                                  Professor, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China
研究内容:不斉触媒反応、生体模倣化学、グリーンケミストリー

論文の概要

アセトニトリル中、有機光触媒PC-1存在下、N-アシルイミン1aとアルキン2Aに対して塩化亜鉛(II)を添加し、紫色光(390 nm)を照射すると、良好な収率で多環式骨格3aAを与えた(図2A)。本反応は、複素環やアルキル基、電子豊富な芳香環を有するN-アシルイミン(3b3d)に適用でき、対応する多環式骨格3Aaを化学・位置選択的に与えた。また、アルキンもプロピオラート2Aだけでなく、プロパルギルケトン2Bや末端アルキン2Cが利用できる。加えて、多環式骨格3を種々誘導体化することにも成功した(詳細は本文参照)。

次に、著者らは機構解明実験に着手した(図2B)。紫外可視吸光測定においてPC-1のみ紫色光を吸収した。この結果から、1a2aの直接励起や電荷移動錯体の形成が否定された。また、シュテルン–フォルマー消光実験では、励起したPC-11aにより消光されることが確認できた。また、2,5-ジメチルヘキサ-2,4-ジエンなどの三重項消光剤やDMPO、TEMPOなどのラジカル補足剤が反応を阻害したことから、本反応はエネルギー移動機構で進行しラジカルが関与することが⽰唆された。アルキン2Aを加えずにN-アシルイミン1dを最適条件に付すと、対応するシクロヘプタトリエン7を与えた。さらに、72A存在下最適条件で反応させると、対応する多環式骨格3dAの合成に成功した。そのほか、反応追跡やDFT計算などにより、本反応がジラジカルを経由するエネルギー移動機構で進行していることが支持された(詳細は本文参照)。

図2. (A) 最適条件と基質適用範囲 (B) 機構解明実験 (論文から引用)

 

以上、光を用いた脱芳香族的環拡大反応と[6+2]環化付加反応を組み合わせた、ベンゼノイドの新たな骨格編集反応が報告された。複雑な多環式骨格を効率的に合成可能な脱芳香族的骨格編集反応のさらなる発展に期待したい。

参考文献

  1.  (a) Wang, C.-S.; Dixneuf, P. H.; Soulé, J.-F. Photoredox Catalysis for Building C−C Bonds from C(Sp2)−H Bonds. Chem. Rev. 2018, 118, 7532−7585. DOI: 10.1021/acs.chemrev.8b00077 (b) Wang, H.; Gao, X.; Lv, Z.; Abdelilah, T.;Lei, A. RecentAdvances in Oxidative R1-H/R2-HCross-Coupling with Hydrogen Evolution Via Photo-/Electrochemistry. Chem. Rev. 2019, 119, 6769−6787. DOI: 10.1021/acs.chemrev.9b00045 (c) Wang, J.; Dong, G. Palladium/Norbornene Cooperative Catalysis. Chem. Rev. 2019, 119, 7478−7528. DOI: 10.1021/acs.chemrev.9b00079 (d) Shi, J.; Li, L.; Li, Y. O-Silylaryl Triflates: A Journey of Kobayashi Aryne Precursors. Chem. Rev. 2021, 121, 3892−4044. DOI: 10.1021/acs.chemrev.0c01011
  2. (a) Roche, S. P.; Porco, J. A. Dearomatization Strategies in the Synthesis of Complex Natural Products. Angew. Chem., Int. Ed. 2011, 50, 4068−4093. DOI: 10.1002/anie.201006017 (b) Zhuo, C. X.; Zhang, W.; You, S. L. Catalytic Asymmetric Dearomatization Reactions. Angew. Chem., Int. Ed. 2012, 51, 12662−12686. DOI: 10.1002/anie.201204822 (c) Wertjes, W. C.; Southgate, E. H.; Sarlah, D. Recent Advances in Chemical Dearomatization of Nonactivated Arenes. Chem. Soc. Rev. 2018, 47, 7996−8017. DOI: 10.1039/C8CS00389K (d) Huck, C. J.; Sarlah, D. Shaping Molecular Landscapes: Recent Advances, Opportunities, and Challenges in Dearomatization. Chem. 2020, 6, 1589−1603.DOI: 10.1016/j.chempr.2020.06.015 (e) Bird, C. W. The Relationship of Classical and Magnetic Criteria of Aromaticity. Tetrahedron 1996, 52, 9945−9952. DOI: 10.1016/0040-4020(96)00526-1
  3. (a) Lovering, F.; Bikker, J.; Humblet, C. Escape from Flatland: Increasing Saturation as an Approach to Improving Clinical Success. J. Med. Chem. 2009, 52, 6752−6756. DOI: 10.1021/jm901241e (b) Lovering, F. Escape from Flatland 2: Complexity and Promiscuity. MedChemComm 2013, 4, 515−519. DOI: 10.1039/C2MD20347B
  4. (a) Streit, U.; Bochet, C. G. The Arene−Alkene Photo-cycloaddition. Beilstein J. Org. Chem. 2011, 7, 525−542. DOI: 10.3762/bjoc.7.61 (b) Remy, R.; Bochet, C. G. Arene−Alkene Cycloaddition. Chem. Rev. 2016, 116, 9816−9849. DOI: 10.1021/acs.chemrev.6b00005 (c) Cornelisse, J. The Meta Photocycloaddition of Arenes to Alkenes. Chem. Rev. 1993, 93, 615−669. DOI: 10.1021/cr00018a002 (d) Ma, J. J.; Chen, S. M.; Bellotti, P.; Guo, R. Y.; Schäfer, F.; Heusler, A.; Zhang, X. L.; Daniliuc, C.; Brown, M. K.; Houk, K. N.; Glorius, F. Photochemical Intermolecular Dearomative Cycloaddition of Bicyclic Azaarenes with Alkenes. Science 2021, 371, 1338−1345. DOI: 10.1126/science.abg0720 (e) Guo, R.; Adak, S.; Bellotti, P.; Gao, X.; Smith, W. W.; Le, S. N.; Ma, J.; Houk, K. N.; Glorius, F.; Chen, S.; Brown, M. K. Photochemical Dearomative Cycloadditions of Quinolines and Alkenes: Scope and Mechanism Studies. J. Am. Chem. Soc. 2022, 144, 17680−17691. DOI: 10.1021/jacs.2c07726 (f) Ma, J.; Chen, S.; Bellotti, P.; Wagener, T.; Daniliuc, C.; Houk, K. N.; Glorius, F. Facile Access to Fused 2D/3D Rings via Intermolecular Cascade Dearomative [2 + 2] Cycloaddition/Rearrangement Reactions of Quinolines with Alkenes. Nat. Catal. 2022, 5, 405−413. DOI: 10.1038/s41929-022-00784-5 (g) Zhu, M.; Zhang, X.; Zheng, C.; You, S.-L. Energy-Transfer Enabled Dearomative Cycloaddition Reactions of Indoles/Pyrroles via Excited-State Aromatics. Acc. Chem. Res. 2022, 55, 2510−2525. DOI: 10.1021/acs.accounts.2c00412 (h) Li, M.; Huang, X.-L.; Zhang, Z.-Y.; Wang, Z.; Wu, Z.; Yang, H.; Shen, W.-J.; Cheng, Y.-Z.; You, S.-L. Gd(III)-Catalyzed Regio-, Diastereo-, and Enantioselective [4 + 2] Photocycloaddition of Naphthalene Derivatives. J. Am. Chem. Soc. 2024, 146, 16982−16989. DOI: 10.1021/jacs.4c05288
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 二酸化炭素をメタノールに変換する有機分子触媒
  2. マテリアルズ・インフォマティクスを実践するためのベイズ最適化入門…
  3. “マイクロプラスチック”が海をただよう …
  4. 分子研オープンキャンパス2023(大学院説明会・体験入学説明会)…
  5. 薬学部ってどんなところ?
  6. 有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコ…
  7. 2021年ノーベル化学賞は「不斉有機触媒の開発」に!
  8. 目が見えるようになる薬

注目情報

ピックアップ記事

  1. メタボ薬開発に道、脂肪合成妨げる化合物発見 京大など
  2. とあるカレイラの天然物〜Pallambins〜
  3. アザヘテロ環をあざとく作ります
  4. ライトケミカル工業2025卒採用情報
  5. ペラミビル / Peramivir
  6. 第16回ケムステVシンポ「マテリアルズインフォマティクス?なにそれおいしいの?」を開催します!
  7. ハーバード大Whitesides教授プリーストリーメダルを受賞
  8. ミツバチに付くダニのはなし
  9. タンパク質の非特異吸着を抑制する高分子微粒子の合成と応用
  10. カルボン酸β位のC–Hをベターに臭素化できる配位子さん!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2025年5月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

7th Compound Challengeが開催されます!【エントリー〆切:2026年03月02日】 集え、”腕に覚えあり”の合成化学者!!

メルク株式会社より全世界の合成化学者と競い合うイベント、7th Compound Challenge…

乙卯研究所【急募】 有機合成化学分野(研究テーマは自由)の研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

大森 建 Ken OHMORI

大森 建(おおもり けん, 1969年 02月 12日–)は、日本の有機合成化学者。東京科学大学(I…

西川俊夫 Toshio NISHIKAWA

西川俊夫(にしかわ としお、1962年6月1日-)は、日本の有機化学者である。名古屋大学大学院生命農…

市川聡 Satoshi ICHIKAWA

市川 聡(Satoshi Ichikawa, 1971年9月28日-)は、日本の有機化学者・創薬化学…

非侵襲で使えるpH計で水溶液中のpHを測ってみた!

今回は、知っているようで知らない、なんとなく分かっているようで実は測定が難しい pH計(pHセンサー…

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP