[スポンサーリンク]

化学者のつぶやき

目が見えるようになる薬

 

C23H30N5O2 …たった60原子の化合物を投与するだけで、目が見えなかったひとを救えるかもしれない。もうマウスでは実験に成功して、希望の光はすぐそこまできています[1],[2]。アゾ化合物シストランス光異性化を利用したその輝かしいからくりをここに紹介します。

 

旧約聖書によれば、神は天地創造の次に、「光あれ(Let there be light.)」とおっしゃり、この世に輝きをもたらしたそうです。文化の東西を問うまでもなく、こうして語り継がれるほどに、わたしたち人類にとって光は特別な存在です。文章を目で追って読むことができるのも、ヒトが優れた視覚を持っているからこそなせるわざです。

しかし、なかには先天的に、あるいは後天的に視覚を失い、光を感じることのできない人もいます。通常、わたしたちは、目の網膜にある視細胞に分布するロドプシンと呼ばれるタンパク質で光を感知しています。このロドプシンは、アミノ酸配列によればGタンパク質共役型受容体(G protein coupled receptor; GPCR)ファミリーに属し、レチナール(ビタミンA)がくっついたりはなれたりするのですが、その後に続くべきシグナル伝達が上手くいかないと視神経に信号が伝わらなくなります。

光を受けて構造や性質が変わる物質は、生体内にあるロドプシンだけではなく、他にも存在します。例えば、窒素間二重結合を含むアゾ化合物には、光異性化といって、特定のエネルギーを持った光を受けると、トランス体からシス体に変化する性質があります。最近、この性質を上手く使って[1]、生まれながら目が見えないマウスを救済することに成功した、と報告されました[2]。

 

アゾ化合物で盲目マウスに光あれ

GREEN2012azo01.png

光で変身する分子

GREEN2012azo02.PNG

決め手は、イオンチャネルと相互作用する分子アゾ基を組み込んだ点。このアゾ化合物、トランス体ではイオンチャネルを阻害できるものの、シス体では作用しないのです[1]。なんとスマートなことでしょう!

視細胞では通常、環状グアノシンモノリン酸(cyclic guanosine monophosphate; cGMP)と呼ばれるセカンドメッセンジャー分子が、豊富にあります。光を感じたときにのみロドプシンの下流にあるcGMP分解酵素が活性化され、視細胞内にあるcGMPが分解されます。すると細胞内の濃度変化を感知してイオンチャネルが駆動するようになり、やがて視神経へと電気信号が伝えられます。それゆえ、cGMP分解酵素はわたしたちの視覚に不可欠なキーメンバーです。このcGMP分解酵素を持っていないと、正常に眼球が発生しているにもかかわらず、生まれながらにして目が見えません。

先ほどのイオンチャネルを標的とするアゾ化合物が、もしかしたらロドプシン光受容体タンパク質の代わりに光を受け取り、本来セカンドメッセンジャーの仲介により視細胞で起こる信号の変換をすっ飛ばして、そのままイオンチャネルに作用することができるかもしれない。この仮説を確かめるため、cGMP分解酵素変異マウスで視覚が回復するか、設計したアゾ化合物を投与する実験が行われました。期待どおり結果は成功。視覚情報だけでマウスが回避行動を取るようになりました[2]。もしヒトであれば「見えています」と証言していたことでしょう。

 

埋め込みタイプの視覚補助用機械と違って制限はあるにせよ、こんな小さな分子を投与するだけで、ロドプシンが機能していなくても視覚を獲得できるとは驚異的です。光による分子の制御はこの他にも、電子部品の精密加工や、副作用を低減したガン治療などで注目のトピックです。今後も周辺分野の発展が期待されます。

 

参考論文

  1. アゾベンゼン光異性化による薬物標的カリウムチャネルの制御 ”Photochemical control of endogenous ion channels and cellular excitability.” Doris L Fortin et al. Nature Methods 2008 DOI: 10.1038/nmeth.1187
  2. アゾベンゼン光異性化を利用した遺伝的に盲目のマウスの救済 ”Photochemical Restoration of Visual Responses in Blind Mice Aleksandra Polosukhina.” Aleksandra Polosukhina et al. Neuron 2012 DOI: 10.1016/j.neuron.2012.05.022

 

関連書籍

 

The following two tabs change content below.
Green

Green

静岡で化学を教えています。よろしくお願いします。
Green

最新記事 by Green (全て見る)

関連記事

  1. 磁性流体アートの世界
  2. 不安定炭化水素化合物[5]ラジアレンの合成と性質
  3. 新風を巻き起こそう!ロレアル-ユネスコ女性科学者日本奨励賞201…
  4. 研究倫理を問う入試問題?
  5. ついに成功した人工光合成
  6. 小説『ラブ・ケミストリー』聖地巡礼してきた
  7. 被引用回数の多い科学論文top100
  8. 研究助成情報サイト:コラボリー/Grants

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ニュースタッフ追加
  2. Lindau Nobel Laureate Meeting 動画集のご紹介
  3. 分子の動きを電子顕微鏡で観察
  4. バイオタージ Isolera: フラッシュ自動精製装置がSPEED UP!
  5. 172番元素までの周期表が提案される
  6. 東京大学理学部 化学教室
  7. カティヴァ 酢酸合成プロセス Cativa Process for Acetic Acid Synthesis
  8. ミヤコシンA (miyakosyne A)
  9. 英会話とプログラミングの話
  10. ライアン・シェンビ Ryan A. Shenvi

関連商品

注目情報

注目情報

最新記事

元素手帳 2018

今年も残すところあと1ヶ月半となってきました。来年に向けて、そろそろアレを購入される方もいら…

シクロペンタジエニル錯体の合成に一筋の光か?

β-炭素脱離を用いるシクロペンタジエニル(Cp)錯体の新たな調製法が報告された。本法により反応系中で…

ルミノール誘導体を用いるチロシン選択的タンパク質修飾法

2015年、東京工業大学・中村浩之らは、ルミノール誘導体と鉄-ポルフィリン複合体(ヘミン)を用い、チ…

酵素触媒によるアルケンのアンチマルコフニコフ酸化

酵素は、基質と複数点で相互作用することにより、化学反応を厳密にコントロールしています。通常のフラ…

イオンの出入りを制御するキャップ付き分子容器の開発

第124回のスポットライトリサーチは、金沢大学 理工研究域物質化学系錯体化学研究分野(錯体化学・超分…

リチウムイオン電池の課題のはなし-1

Tshozoです。以前リチウムイオン電池に関するトピックを2つほど紹介した(記事:リチウムイ…

Chem-Station Twitter

PAGE TOP