[スポンサーリンク]

化学者のつぶやき

目が見えるようになる薬

[スポンサーリンク]

 

C23H30N5O2 …たった60原子の化合物を投与するだけで、目が見えなかったひとを救えるかもしれない。もうマウスでは実験に成功して、希望の光はすぐそこまできています[1],[2]。アゾ化合物シストランス光異性化を利用したその輝かしいからくりをここに紹介します。

 

旧約聖書によれば、神は天地創造の次に、「光あれ(Let there be light.)」とおっしゃり、この世に輝きをもたらしたそうです。文化の東西を問うまでもなく、こうして語り継がれるほどに、わたしたち人類にとって光は特別な存在です。文章を目で追って読むことができるのも、ヒトが優れた視覚を持っているからこそなせるわざです。

しかし、なかには先天的に、あるいは後天的に視覚を失い、光を感じることのできない人もいます。通常、わたしたちは、目の網膜にある視細胞に分布するロドプシンと呼ばれるタンパク質で光を感知しています。このロドプシンは、アミノ酸配列によればGタンパク質共役型受容体(G protein coupled receptor; GPCR)ファミリーに属し、レチナール(ビタミンA)がくっついたりはなれたりするのですが、その後に続くべきシグナル伝達が上手くいかないと視神経に信号が伝わらなくなります。

光を受けて構造や性質が変わる物質は、生体内にあるロドプシンだけではなく、他にも存在します。例えば、窒素間二重結合を含むアゾ化合物には、光異性化といって、特定のエネルギーを持った光を受けると、トランス体からシス体に変化する性質があります。最近、この性質を上手く使って[1]、生まれながら目が見えないマウスを救済することに成功した、と報告されました[2]。

 

アゾ化合物で盲目マウスに光あれ

GREEN2012azo01.png

光で変身する分子

GREEN2012azo02.PNG

決め手は、イオンチャネルと相互作用する分子アゾ基を組み込んだ点。このアゾ化合物、トランス体ではイオンチャネルを阻害できるものの、シス体では作用しないのです[1]。なんとスマートなことでしょう!

視細胞では通常、環状グアノシンモノリン酸(cyclic guanosine monophosphate; cGMP)と呼ばれるセカンドメッセンジャー分子が、豊富にあります。光を感じたときにのみロドプシンの下流にあるcGMP分解酵素が活性化され、視細胞内にあるcGMPが分解されます。すると細胞内の濃度変化を感知してイオンチャネルが駆動するようになり、やがて視神経へと電気信号が伝えられます。それゆえ、cGMP分解酵素はわたしたちの視覚に不可欠なキーメンバーです。このcGMP分解酵素を持っていないと、正常に眼球が発生しているにもかかわらず、生まれながらにして目が見えません。

先ほどのイオンチャネルを標的とするアゾ化合物が、もしかしたらロドプシン光受容体タンパク質の代わりに光を受け取り、本来セカンドメッセンジャーの仲介により視細胞で起こる信号の変換をすっ飛ばして、そのままイオンチャネルに作用することができるかもしれない。この仮説を確かめるため、cGMP分解酵素変異マウスで視覚が回復するか、設計したアゾ化合物を投与する実験が行われました。期待どおり結果は成功。視覚情報だけでマウスが回避行動を取るようになりました[2]。もしヒトであれば「見えています」と証言していたことでしょう。

 

埋め込みタイプの視覚補助用機械と違って制限はあるにせよ、こんな小さな分子を投与するだけで、ロドプシンが機能していなくても視覚を獲得できるとは驚異的です。光による分子の制御はこの他にも、電子部品の精密加工や、副作用を低減したガン治療などで注目のトピックです。今後も周辺分野の発展が期待されます。

 

参考論文

  1. アゾベンゼン光異性化による薬物標的カリウムチャネルの制御 ”Photochemical control of endogenous ion channels and cellular excitability.” Doris L Fortin et al. Nature Methods 2008 DOI: 10.1038/nmeth.1187
  2. アゾベンゼン光異性化を利用した遺伝的に盲目のマウスの救済 ”Photochemical Restoration of Visual Responses in Blind Mice Aleksandra Polosukhina.” Aleksandra Polosukhina et al. Neuron 2012 DOI: 10.1016/j.neuron.2012.05.022

 

関連書籍

 

Green

Green

投稿者の記事一覧

静岡で化学を教えています。よろしくお願いします。

関連記事

  1. マイクロ波プロセスの工業化 〜環境/化学・ヘルスケア・電材領域で…
  2. 卒論・修論にむけて〜わかりやすく伝わる文章を書こう!〜
  3. Reaxys Ph.D Prize2019ファイナリスト発表!
  4. 「関口存男」 ~語学の神様と言われた男~
  5. 研究助成情報サイト:コラボリー/Grants
  6. 東京理科大学みらい研究室にお邪魔してきました
  7. ふにふにふわふわ☆マシュマロゲルがスゴい!?
  8. シュガーとアルカロイドの全合成研究

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 富士通、化合物分子設計統合支援ソフト「キャッシュ」新バージョンを販売
  2. 有機合成化学協会誌2018年3月号:π造形科学・マグネシウムカルベノイド・Darzens反応・直接的触媒的不斉アルキニル化・光環化付加反応
  3. ヘイオース・パリッシュ・エダー・ザウアー・ウィーチャート反応 Hajos-Parrish-Eder-Sauer-Wiechert Reaction
  4. ウェルナー・ナウ Werner M. Nau
  5. 電池長寿命化へ、充電するたびに自己修復する電極材
  6. シャピロ反応 Shapiro Reaction
  7. 科学的発見を加速する新研究ツール「SciFinder n」を発表
  8. Chem-Station開設5周年へ
  9. ケンダール・ハウク Kendall N. Houk
  10. JSR、東大理物と包括的連携に合意 共同研究や人材育成を促進

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

不溶性アリールハライドの固体クロスカップリング反応

第305回のスポットライトリサーチは、北海道大学大学院工学研究院 (伊藤研究室)・瀬尾 珠恵さんにお…

化学のためのPythonによるデータ解析・機械学習入門

hodaです。今回は筆者の勉強用に読んだ機械学習関連の書籍を紹介します。概要本書は、…

アカデミックから民間企業へ転職について考えてみる 第三回

カデミックから民間企業へ転職した場合、入社後にギャップを感じる人が少なからずいます。もちろん、どんな…

第142回―「『理想の有機合成』を目指した反応開発と合成研究」山口潤一郎 教授

第142回の化学者インタビューは日本から、皆さんご存じ、山口潤一郎教授の登場です。名古屋大学理学部化…

【書籍】ゼロからの最速理解 プラスチック材料化学

今月発売された『ゼロからの最速理解 プラスチック材料化学』(佐々木 健夫 著,コロナ社)という書籍を…

重水は甘い!?

同位体はある元素、すなわち同一の原子番号をもつ原子核において、中性子数の異なる核種のことをいいますね…

人物でよみとく化学

概要化学の歴史をつくった約50人を収録。高校・大学の化学の勉強に役立つ16テーマをあつかい、…

金属ナトリウム分散体(SD Super Fine ™)

概要金属ナトリウム分散体(SD Super Fine ™)は、金属ナトリウムの微粒…

Chem-Station Twitter

PAGE TOP