[スポンサーリンク]

世界の化学者データベース

相良剛光 SAGARA Yoshimitsu

[スポンサーリンク]

 

相良剛光(Yoshimitsu Sagara, 1981)は、光機能性超分子を専門とする日本の化学者である。機械的刺激(力)に応じて蛍光特性が変化する材料を、当該分野の黎明期から先駆的に開発している。最近の研究対象は、超分子メカノフォア、および、低次元のメカノクロミック蛍光材料。2024年現在、東京工業大学 准教授。46回ケムステVシンポ講師。

 

経歴

2004.3. 東京大学 工学部 化学生命工学科 卒業
2009.3. 東京大学大学院 工学系研究科 化学生命工学専攻 博士後期課程修了
2009.4.~ 2010.3. 日本学術振興会 特別研究員PD (DC2から資格変更)
2010.4.~ 2013.3. 日本学術振興会 特別研究員PD
2013.7.~ 2015.6. 日本学術振興会 海外特別研究員(留学先:Adolphe Merkle Institute, スイス)
2015.7.~ 2020.3 北海道大学 電子科学研究所 助教
2017.10.~ 2021.3 JSTさきがけ「光極限」領域研究員(兼任)
2020.4.~ 東京工業大学 物質理工学院 准教授
2021.4.~ JST創発研究者

受賞歴

2022年        公益財団法人 島津科学技術振興財団 島津奨励賞
2021年        公益財団法人 新世代研究所 ATI 研究奨励賞
2020年        東工大挑戦的研究賞 末松特別賞
2019年        高分子学会 パブリシティ賞
2019年        文部科学大臣表彰 若手科学者賞
2018年        公益財団法人 江野科学振興財団 田中ゴム科学技術賞
2012年        日本液晶学会論文賞A
2012年        日本MRS 奨励賞を受賞
2009年        ポスター賞(第18回ポリマー材料フォーラム)
2009年        東京大学・工学系研究科 工学系研究科長賞
2008年        日本液晶学会 虹彩賞

研究業績

分子集合構造変化に基づく「メカノクロミック蛍光材料」の開発

分子集合体の蛍光特性は、その分子集合構造に大きく依存する。 そのため、その集合構造を機械的刺激(力)で変えることができれば、分子内の共有結合を切断することなく、材料の蛍光特性を変化させることができる(図1)。[1][2] 2007年に機械的刺激と熱刺激印加により相互に蛍光色を変換できる結晶性材料を初めて報告し、[3]2008年には液晶においてもせん断によって蛍光色が変化することを示した。[4] さらに、 単一の蛍光団しか含んでいないにもかかわらず、機械的刺激を含む外部刺激により相互に変換できる三種類の蛍光色を示す液晶材料も報告した。[5]

図1. 分子集合構造変化に基づくメカノクロミック蛍光材料の概念図

 

低次元化されたメカノクロミック蛍光材料

上述した分子集合構造変化を利用したメカノクロミック蛍光材料を、力の印加を可視化・評価する実用的なメカノ蛍光プローブとして応用するためには、微小な力の検出ができ、かつ閾値を設けることが重要となる。そこで、水の中で力を受けて蛍光色が変化するメカノクロミック蛍光ミセルを開発した。[6]このミセルは10~15個程度のダンベル状の両親媒性分子で構成されており、一定のサイズを持つ。また、ごく最近、機械的刺激を印加して水溶性を獲得する1次元のメカノクロミック蛍光超分子ファイバー(図2)も報告している。[7]

図2.低次元化されたメカノクロミック蛍光材料

 

超分子メカノフォア

さらに、この概念を1分子レベルまで落とし込んだ、「超分子メカノフォア」を報告している。メカノフォアとは、機械的刺激を受けて様々な応答を示す分子骨格である。既報のメカノフォアの多くは、吸収・蛍光特性の変化を誘起するために共有結合を切断する必要があった。一方、超分子メカノフォアでは、蛍光団や消光団の相関配置を変化させて、蛍光特性変化を達成する。まず2018年に、インターロック構造を利用したロタキサン型超分子メカノフォアを報告した(図3)。[8]このメカノフォアを導入したポリウレタンエラストマーを伸縮すると、瞬時、かつ可逆的に蛍光色がOn/Offスイッチする。その後、蛍光団を変更すれば、蛍光色を簡単に変更することができ、[9]さらにストッパーのサイズを変えることで、蛍光特性の可逆変化のみならず不可逆変化までも起きることを見出した。[10]また、異なるモチーフとして、環状化合物であるシクロファンに着目し、エキシマー蛍光⇔モノマー蛍光のスイッチ、および、電荷移動錯体からの蛍光⇔モノマー蛍光のスイッチを利用したシクロファン型超分子メカノフォアを報告している。[11][12]

図3. ロタキサン型超分子メカノフォア

名言集

コメント&その他

関連動画

 引っ張ると白色蛍光を示すゴム材料 ケムステ・スポットライトリサーチ
「メカノセンシング発光材料の創製と応用探索」相良剛光研究室 – 物質理工学院

関連文献

[1] Sagara, Y.; Kato, T. Nat. Chem. 2009, 1, 605. DOI: 10.1038/nchem.411.
[2] Sagara, Y.; Yamane, S.; Mitani, M.; Weder, C.; Kato, T. Adv. Mater. 2016, 28, 1073. DOI: 10.1002/adma.201502589.
[3] Sagara, Y.; Mutai, T.; Yoshikawa, I.; Araki, K. J. Am. Chem. Soc. 2007, 129, 1520. DOI: 10.1021/ja0677362.
[4] Sagara, Y.; Kato, T. Angew. Chem. Int. Ed. 2008, 47, 5175. DOI: 10.1002/anie.200800164.
[5] Sagara, Y.; Kato, T. Angew. Chem. Int. Ed. 2011, 50, 9128. DOI: 10.1002/anie.201100914.
[6] Sagara, Y.; Komatsu, T.; Ueno, T.; Hanaoka, K.; Kato, T.; Nagano, T. J. Am. Chem. Soc. 2014, 136, 4273. DOI: 10.1021/ja412670g.
[7] Liu, Q.; Zhang, T.; Ikemoto, Y.; Shinozaki, Y.; Watanabe, G.; Hori, Y.; Shigeta, Y.; Midorikawa, T.; Harano, K.; Sagara, Y. Small 2024, 20, 2400063. DOI: 10.1002/smll.202400063
[8] Sagara, Y.; Karman, M.; Verde-Sesto, E.; Matsuo, K.; Kim, Y.; Tamaoki, N.; Weder, C. J. Am. Chem. Soc. 2018, 140, 1584. DOI: 10.1021/jacs.7b12405.
[9] Sagara, Y.; Karman, M.; Seki, A.; Pannipara, M.; Tamaoki, N.; Weder, C. ACS Cent. Sci. 2019, 5, 874. DOI: 10.1021/acscentsci.9b00173.
[10] Muramatsu, T.; Okado, Y.; Traeger, H.; Schrettl, S.; Tamaoki, N.; Weder, C.; Sagara, Y. J. Am. Chem. Soc. 2021, 14, 9884. DOI: 10.1021/jacs.1c03790.
[11] Sagara, Y.; Traeger, H.; Li, J.; Okado, Y.; Schrettl, S.; Tamaoki, N.; Weder, C. J. Am. Chem. Soc. 2021, 143, 5519. DOI: 10.1021/jacs.1c01328.
[12] Thazhathethil, S.; Muramatsu, T.; Tamaoki, N.; Weder, C.; Sagara, Y. Angew. Chem. Int. Ed. 2022, 61, e202209225. DOI: 10.1002/anie.202209225.

関連書籍

関連リンク

相良研ホームページ
メゾヒエラルキーの物質科学

Macy

投稿者の記事一覧

有機合成を専門とする教員。将来取り組む研究分野を探し求める「なんでも屋」。若いうちに色々なケミストリーに触れようと邁進中。

関連記事

  1. マイケル・オキーフィ Michael O’Keeff…
  2. マット・フランシス Matthew B. Francis
  3. 村井 眞二 Shinji Murai
  4. マニュエル・ヴァン・ゲメレン Manuel van Gemmer…
  5. 吉野 彰 Akira Yoshino
  6. デヴィッド・クレネマン David Klenerman
  7. ロバート・グラブス Robert H. Grubbs
  8. 八島栄次 Eiji Yashima

注目情報

ピックアップ記事

  1. 巨大ポリエーテル天然物「ギムノシン-A」の全合成
  2. ケムステVシンポまとめ
  3. メタボ薬開発に道、脂肪合成妨げる化合物発見 京大など
  4. 企業における研究開発の多様な目的
  5. ここまでできる!?「DNA折り紙」の最先端 ① ~入門編~
  6. 第94回日本化学会付設展示会ケムステキャンペーン!Part III
  7. 第88回―「新規なメソポーラス材料の創製と応用」Dongyuan Zhao教授
  8. 計算化学記事まとめ
  9. アルケンとニトリルを相互交換する
  10. 投手が使用するすべり止め剤の効果を初めて定量的に実証

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年9月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP