[スポンサーリンク]

一般的な話題

光化学と私たちの生活そして未来技術へ

[スポンサーリンク]

 

はじめに

光化学は、エネルギー的に安定な基底状態から不安定な光励起状態への光吸収から始まり、蛍光やりん光などの輻射過程、熱を放出しながら基底状態に戻る無輻射失活、エネルギー移動、電子移動、様々な化学反応、様々な性質の制御(電荷、磁気的性質、構造など)の現象につながります。

生命科学における光化学

これらの光化学現象は、我々の生命活動に直結しています。まず、光エネルギーを化学エネルギーに変換する光合成を最初に挙げたいと思います。地球で最大規模の光化学反応と言われる光合成は、様々な化学反応から構成されていますが、アンテナクロロフィルの光吸収・光エネルギー移動から光誘起電子移動・電荷分離が、その初期過程となっています。その結果、CO2とH2Oから糖とO2が生成されることから、この光化学反応なくして、我々人間は生きていくことはできないと言えるでしょう。
次の例として、目において、光の明暗を感知するのはロドプシンを紹介します。人は視覚から多くの情報を得ていると言われていますが、これは、レチナールとオプシンタンパク質の複合体であるロドプシンにおいて、レチナールの光異性化反応がオプシンタンパク質の構造を変え、神経細胞へ信号が伝達されることに基づいています。
また、様々な生命活動を調べるために数多くの発光プローブが開発され、活用されています。さらに、光増感剤となる分子を癌細胞に取り込ませ、生体組織透過性が高い光(> 650 nm)を分子に照射(エネルギー移動により一重項酸素が生成)すると、癌細胞を攻撃することができます。これは、光線力学的療法(PDT: Photodynamic Therapy)と呼ばれ、切除しづらい組織における癌治療に実用化されています。
このように我々人間は、光化学反応を上手く利用して生命活動を行っていると言えるでしょう。

材料における光化学

色素分子の色は、例えばインクジェットプリンタなどの染料やペンキ塗料などの顔料に実用化されています。これは、色素分子の光吸収スペクトルと密接に関連していると言えるでしょう。蛍光・りん光などの発光は、例えば有機ELディスプレイに利用されています。
光誘起電子移動反応は、光エネルギーを電気エネルギーに変換する太陽電池、光エネルギーを化学エネルギーに変換する人工光合成において極めて重要です。また光触媒反応は、光エネルギーにより、高付加価値を有する化学物質を合成したりするだけでなく、エネルギー的に不安定な化学物質を合成してエネルギーを貯蓄するという考え方も適用されます。
また最近では、蒸気にさらす、擦る、回すなどの極めて弱いマクロな刺激に応答して、発光や光学特性などの「目に見える」性質が変化する新奇物質群「ソフトクリスタル」や、1つの光子で2つの励起状態をつくるシングレットフィッション、2つの光子のエネルギーを合わせて高い光エネルギーをつくるアップコンバージョンなどの新しい考え方も光化学から生まれてきています。

光化学は量子化学と実学の境界面

こういった光化学を用いた生命現象の理解、役に立つ材料・光反応の開発には、光吸収過程、蛍光・りん光の輻射過程、エネルギー移動、電子移動などの基本的な現象は、量子化学的に設計できる部分が多くあります。そのため光化学は、量子化学と実学の境界面であると言え、今後の科学技術の発展には不可欠な学問と言えます。これら光化学現象の基礎的理解は非常に重要ですが、やや専門的な知識が必要とされます。また、光化学現象の定量的評価にも専門的な知識・技術が求められることから、これらは、独学では難しい部分も含まれるかも知れません。
光化学協会では、以下の講座を開催しています。

  • 光化学基礎講座:光化学を初めて学ぶ学生・光化学に関する業務に初めて携わる社会人などを対象
  • 光化学応用講座:光化学研究を行う学生や社会人を対象
  • 賛助会員共同セミナー:光化学関連機器紹介、測定の基礎原理や研究例などを解説

先述した光化学に対する需要を踏まえ、今年から、より多くの方にオンラインで受講していただけるようにしました(詳しくはHPをご覧ください:)。これより、光化学領域の基盤研究・応用技術の進展に貢献したいと考えております。

光化学について学びたい方はこちら!

本記事は石井和之(東大生研)・長谷川靖哉(北大院工)・長谷川美貴(青山学院大理工)先生による寄稿記事です。

関連書籍

光化学 (1) (基礎化学コース)

光化学 (1) (基礎化学コース)

井上 晴夫
¥3,520(as of 01/29 14:25)
Amazon product information
金属錯体の光化学 (錯体化学会選書 2)

金属錯体の光化学 (錯体化学会選書 2)

佐々木 陽一, 石谷 治, 石井 和之, 石田 斉, 大越 慎一, 加藤 昌子, 小池 和英, 杉原 秀樹, 民秋 均, 野崎 浩一
Amazon product information
Avatar photo

ケムステPR

投稿者の記事一覧

ケムステのPRアカウントです。募集記事や記事体広告関連の記事を投稿します。

関連記事

  1. 無保護カルボン酸のラジカル機構による触媒的酸化反応の開発
  2. NMRの基礎知識【原理編】
  3. 化学英語論文/レポート執筆に役立つPCツール・決定版
  4. 第93回日本化学会付設展示会ケムステキャンペーン!Part I
  5. 留学せずに英語をマスターできるかやってみた(1年目)
  6. 大学院生のつぶやき:UCEEネット、ご存知ですか?
  7. 低い電位で多電子移動を引き起こす「ドミノレドックス反応」とは!?…
  8. 創薬・医療系ベンチャー支援プログラム”BlockbusterTO…

注目情報

ピックアップ記事

  1. NaHの水素原子の酸化数は?
  2. 危険!DDT入りの蚊取り線香
  3. ドミトリ・メンデレーエフの墓
  4. Google Scholarにプロフィールを登録しよう!
  5. ニッケル触媒でアミド結合を切断する
  6. 化学分野での特許無効審判における 実験データの戦略的な活用方法【終了】
  7. 東京大学大学院理学系研究科化学専攻 大学院入試情報
  8. 「自分の意見を言える人」がしている3つのこと
  9. ダイセル発、にんにく由来の機能性表示食品「S-アリルシステイン」
  10. C–H活性化反応ーChemical Times特集より

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年8月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP