[スポンサーリンク]

一般的な話題

光化学と私たちの生活そして未来技術へ

[スポンサーリンク]

 

はじめに

光化学は、エネルギー的に安定な基底状態から不安定な光励起状態への光吸収から始まり、蛍光やりん光などの輻射過程、熱を放出しながら基底状態に戻る無輻射失活、エネルギー移動、電子移動、様々な化学反応、様々な性質の制御(電荷、磁気的性質、構造など)の現象につながります。

生命科学における光化学

これらの光化学現象は、我々の生命活動に直結しています。まず、光エネルギーを化学エネルギーに変換する光合成を最初に挙げたいと思います。地球で最大規模の光化学反応と言われる光合成は、様々な化学反応から構成されていますが、アンテナクロロフィルの光吸収・光エネルギー移動から光誘起電子移動・電荷分離が、その初期過程となっています。その結果、CO2とH2Oから糖とO2が生成されることから、この光化学反応なくして、我々人間は生きていくことはできないと言えるでしょう。
次の例として、目において、光の明暗を感知するのはロドプシンを紹介します。人は視覚から多くの情報を得ていると言われていますが、これは、レチナールとオプシンタンパク質の複合体であるロドプシンにおいて、レチナールの光異性化反応がオプシンタンパク質の構造を変え、神経細胞へ信号が伝達されることに基づいています。
また、様々な生命活動を調べるために数多くの発光プローブが開発され、活用されています。さらに、光増感剤となる分子を癌細胞に取り込ませ、生体組織透過性が高い光(> 650 nm)を分子に照射(エネルギー移動により一重項酸素が生成)すると、癌細胞を攻撃することができます。これは、光線力学的療法(PDT: Photodynamic Therapy)と呼ばれ、切除しづらい組織における癌治療に実用化されています。
このように我々人間は、光化学反応を上手く利用して生命活動を行っていると言えるでしょう。

材料における光化学

色素分子の色は、例えばインクジェットプリンタなどの染料やペンキ塗料などの顔料に実用化されています。これは、色素分子の光吸収スペクトルと密接に関連していると言えるでしょう。蛍光・りん光などの発光は、例えば有機ELディスプレイに利用されています。
光誘起電子移動反応は、光エネルギーを電気エネルギーに変換する太陽電池、光エネルギーを化学エネルギーに変換する人工光合成において極めて重要です。また光触媒反応は、光エネルギーにより、高付加価値を有する化学物質を合成したりするだけでなく、エネルギー的に不安定な化学物質を合成してエネルギーを貯蓄するという考え方も適用されます。
また最近では、蒸気にさらす、擦る、回すなどの極めて弱いマクロな刺激に応答して、発光や光学特性などの「目に見える」性質が変化する新奇物質群「ソフトクリスタル」や、1つの光子で2つの励起状態をつくるシングレットフィッション、2つの光子のエネルギーを合わせて高い光エネルギーをつくるアップコンバージョンなどの新しい考え方も光化学から生まれてきています。

光化学は量子化学と実学の境界面

こういった光化学を用いた生命現象の理解、役に立つ材料・光反応の開発には、光吸収過程、蛍光・りん光の輻射過程、エネルギー移動、電子移動などの基本的な現象は、量子化学的に設計できる部分が多くあります。そのため光化学は、量子化学と実学の境界面であると言え、今後の科学技術の発展には不可欠な学問と言えます。これら光化学現象の基礎的理解は非常に重要ですが、やや専門的な知識が必要とされます。また、光化学現象の定量的評価にも専門的な知識・技術が求められることから、これらは、独学では難しい部分も含まれるかも知れません。
光化学協会では、以下の講座を開催しています。

  • 光化学基礎講座:光化学を初めて学ぶ学生・光化学に関する業務に初めて携わる社会人などを対象
  • 光化学応用講座:光化学研究を行う学生や社会人を対象
  • 賛助会員共同セミナー:光化学関連機器紹介、測定の基礎原理や研究例などを解説

先述した光化学に対する需要を踏まえ、今年から、より多くの方にオンラインで受講していただけるようにしました(詳しくはHPをご覧ください:)。これより、光化学領域の基盤研究・応用技術の進展に貢献したいと考えております。

光化学について学びたい方はこちら!

本記事は石井和之(東大生研)・長谷川靖哉(北大院工)・長谷川美貴(青山学院大理工)先生による寄稿記事です。

関連書籍

光化学 (1) (基礎化学コース)

光化学 (1) (基礎化学コース)

井上 晴夫
¥3,520(as of 05/25 14:27)
Amazon product information
金属錯体の光化学 (錯体化学会選書 2)

金属錯体の光化学 (錯体化学会選書 2)

佐々木 陽一, 石谷 治, 石井 和之, 石田 斉, 大越 慎一, 加藤 昌子, 小池 和英, 杉原 秀樹, 民秋 均, 野崎 浩一
Amazon product information
Avatar photo

ケムステPR

投稿者の記事一覧

ケムステのPRアカウントです。募集記事や記事体広告関連の記事を投稿します。

関連記事

  1. 有機合成化学協会誌2024年5月号:「分子設計・編集・合成科学の…
  2. 究極のナノデバイスへ大きな一歩:分子ワイヤ中の高速電子移動
  3. 水をヒドリド源としたカルボニル還元
  4. 高分子材料におけるマテリアルズ・インフォマティクスの活用とは?
  5. 可視光エネルギーを使って単純アルケンを有用分子に変換するハイブリ…
  6. 分子模型を比べてみた
  7. 推進者・企画者のためのマテリアルズ・インフォマティクスの組織推進…
  8. SigmaAldrichフッ素化合物30%OFFキャンペーン

注目情報

ピックアップ記事

  1. Reaction and Synthesis: In the Organic Chemistry Laboratory
  2. 未来博士3分間コンペティション2021(オンライン)挑戦者募集中
  3. 微小な前立腺がんを迅速・高感度に蛍光検出する
  4. 大陽日酸の産業ガスへの挑戦
  5. 盗難かと思ったら紛失 千葉の病院で毒薬ずさん管理
  6. 研究者/研究力
  7. ジブロモイソシアヌル酸:Dibromoisocyanuric Acid
  8. チエナマイシン /thienamycin
  9. NaHの水素原子の酸化数は?
  10. 気になるあの会社~東京エレクトロン~

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年8月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

MDSのはなし 骨髄異形成症候群とそのお薬の開発状況 その1

Tshozoです。今回はかなり限定した疾患とそれに対するお薬の開発の中身をまとめておこうと思いま…

第42回メディシナルケミストリーシンポジウム

テーマAI×創薬 無限能可能性!? ノーベル賞研究が拓く創薬の未来を探る…

山口 潤一郎 Junichiro Yamaguchi

山口潤一郎(やまぐちじゅんいちろう、1979年1月4日–)は日本の有機化学者である。早稲田大学教授 …

ナノグラフェンの高速水素化に成功!メカノケミカル法を用いた芳香環の水素化

第660回のスポットライトリサーチは、名古屋大学大学院理学研究科(有機化学研究室)博士後期課程3年の…

第32回光学活性化合物シンポジウム

第32回光学活性化合物シンポジウムのご案内光学活性化合物の合成および機能創出に関する研究で顕著な…

位置・立体選択的に糖を重水素化するフロー合成法を確立 ― Ru/C触媒カートリッジで150時間以上の連続運転を実証 ―

第 659回のスポットライトリサーチは、岐阜薬科大学大学院 アドバンストケミストリー…

【JAICI Science Dictionary Pro (JSD Pro)】CAS SciFinder®と一緒に活用したいサイエンス辞書サービス

ケムステ読者の皆様には、CAS が提供する科学情報検索ツール CAS SciFind…

有機合成化学協会誌2025年5月号:特集号 有機合成化学の力量を活かした構造有機化学のフロンティア

有機合成化学協会が発行する有機合成化学協会誌、2025年5月号がオンラインで公開されています!…

ジョセップ・コルネラ Josep Cornella

ジョセップ・コルネラ(Josep Cornella、1985年2月2日–)はスペイン出身の有機・無機…

電気化学と数理モデルを活用して、複雑な酵素反応の解析に成功

第658回のスポットライトリサーチは、京都大学大学院 農学研究科(生体機能化学研究室)修士2年の市川…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP