[スポンサーリンク]

一般的な話題

1,2-還元と1,4-還元

[スポンサーリンク]

α,β-不飽和カルボニル化合物を還元する場合を考えてみよう。以下に示す、3種類の生成物が得られる可能性がある(図1)。

  1. カルボニル炭素がヒドリドの攻撃を受けて生成する、アリルアルコール (1,2-還元)
  2. 電子不足の二重結合がヒドリドの攻撃を受けて得られる、飽和カルボニル化合物B(1,4-還元)
  3. 1.4-還元を受けた後、飽和カルボニル化合物Bがさらに還元を受けて得られる飽和アルコールC

図1:1,2-還元と1,4-還元 (M=金属)

この選択性の制御は、有機合成における重要な研究課題のひとつである。今回はこの1,2-還元/1,4-還元にスポットを当てて話してみよう。

1,2-還元

   α,β-不飽和カルボニル化合物を、選択的に1,2-還元したい。どうすればよいだろうか?
単純な還元剤でそれを達成することは難しい。たとえば、シクロペンテノンを水素化ホウ素ナトリウム(NaBH4)で還元した場合、1,4-還元→カルボニルの還元(パターンC)がおきてしまう。結果、ほぼ定量的にシクロペンタノールが得られる(図2)。 水素化リチウムアルミニウム(LAH)も、ほぼ同様の反応を起こす。

図2:シクロペンテノンの還元

以下、これまでに開発されている代表的な方法をあげてみよう。

Luche還元

NaBH4の選択性を制御すべく、さまざまな添加剤の検討がなされている。 Li+、Cu+などの金属塩を添加した場合には、 選択性に改善は見られない。 一方で、Ni2+、Co2+の金属塩を添加すると、1,4-還元体であるシクロペンタノンが得られる。

 しかし、3価のランタノイド化合物、特にCeCl3・7H2Oを添加すれば、選択的な1,2-還元を起こせる。この反応は発見者の名前を取って、Luche還元と呼ばれている(図3)。 基質一般性も高く、反応時間も3~5分と短い。酸素や水分を気にすることなく、簡単に行えることが特長である。

図3:シクロペンテノンの選択的1,2-還元 (Luche還元)

ランタノイド金属塩は、NaBH4のヒドリドとアルコキシ基の交換を促すといわれている(図4)。これによりハードな還元剤が系中生成し、HSAB則により、1,2-付加が優先して起きるようになると考えられている。

図4:Luche還元の反応機構

NaBH4-CaCl2を用いる1,2-還元反応[1]

上記で用いるランタノイド化合物よりも扱いが簡便で、安価なCaCl2を用いる1,2-還元が報告されている。論文中の基質においては、収率、選択性ともに高収率で1,2-還元体が得られている。MeOH溶媒中、基質にCaCl2を加えて30分攪拌し、その後0℃で1時間反応させれば良い。

図5:塩化カルシウム添加条件における1,2-還元

 Wilkinson錯体-Ph2SiH2を用いる1,2-還元反応

 シラン化合物-Wilkinson触媒の組み合わせは、いろいろな還元に有効である。図6のようにβ-ヨノンを還元する場合、Ph2SiH2を用いると、1,2-還元が進行する。一方で、EtMe2SiHを用いると1,4-還元が選択的に進行する。基質は限定されるものの、条件を使い分けることができる。

図6:Wilkinson触媒を用いるβ-ヨノンの1,2-還元

DIBALを用いる1,2-還元反応

 ジイソブチルアルミニウムヒドリド(DIBAL)を用いると、1,2-還元が進行する事実はよく知られている。アルミニウムがルイス酸性を持つため、カルボニルと配位した状態からヒドリド移動が起こると考えられている。(図7)

図7:DIBALを用いる1,2-還元

1,4-還元

Fe(CO)5-OH を用いる1,4-還元反応[2]

 鉄ペンタカルボニルをKOHで処理すると、鉄ヒドリドが生成する。これはα,β-不飽和アルデヒド、ケトン、エステル、ラクトン、ニトリルを選択的に1,4-還元する。
反応は、二重結合へH-Feが不可逆付加することで始まり、続いてプロトン分解が起こる。この還元では、両方の水素は水由来である。関連する複核錯体NaHFe2(CO)8も類似の科学的挙動を示すが、異なる反応機構で進む。[3] しかしながらこれらの系は、β位に置換基を持つなどで、反応点周りに立体障害がある基質には適用できない。

図8:鉄ペンタカルボニルを用いる1,4-還元の反応機構

 Bu3SnH-Pd(0) を用いる1,4-還元反応[4]

パラジウム(0)触媒とトリブチルスズの組み合わせは、1,4-還元を起こすことが報告されている。反応機構の詳細は不明であるが、パラジウムヒドリドを経る図8のような反応機構が、その可能性として考えられている。

図9:Pd(0)-トリブチルスズ系を用いる1,4-還元の推定反応機構

Na2S2O4を用いる1,4-還元反応[5]

 二種の化合物を混合しNa2S2O4での還元を図9の条件で行うと、1,4-還元体が選択的に得られることが報告されている。

図10: Na2S2O4を用いる1,4-還元反応

Sm(0)を用いる1,4-還元反応[6]

 金属サマリウム(2.2eq)・ヨウ素(1eq)からメタノール中調製される還元剤を、α,β-不飽和カルボニル、アミド、ニトリルと反応させると、1,4-還元体が得られることが報告されている。

図11: Sm(0)を用いる1,4-還元反応

 

Co(acac)2-DIBALを用いる1,4-還元反応[7]

 先述したように、DIBALのみを用いると、1,2-還元が進行する。しかし、Co(acac)2を共存させると1,4-還元が高収率、選択的に進行するようになる。系中で生成するコバルトヒドリド種が活性種として考えられている。

図12:Co(acac)2-DIBALを用いる1,4-還元反応

 CuH-silaneを用いる1,4-還元反応[8]

 銅ヒドリドトリフェニルホスフィンヘキサマー(Stryker試薬)を触媒として用い、ポリメチルヒドロシロキサン(PMHS)を加えることによって1,4-還元が進行する。フッ素源でシリルを落とせばケトンに変換できるが、トラップされたシリルエノールエーテルをワンポットで連続的な反応に伏すことも期待できる。
その他、CuF(PPh3)3・2EtOH)-PhMe2SiH系でも1,4-還元が高収率、高選択的に進行する。[9]

図13:CuH-silaneを用いる1,4-還元反応

 まとめ

以上、簡単に新旧の1,2還元と1,4還元についてまとめてみた。どれが一番いい方法なのか?については、一概に言うことができない。基質、反応条件、コスト等々によって選択は変わってくるからだ。研究室レベルで使いやすい反応は?となると、入手容易なもので簡便に実行できるものが良いと言える。1,2-還元ではLuche還元とDIBAL、1,4-還元ではCo(acac)2-DIBAL系かもしくはCu-シラン系を使うのが良いように思える。


図14: 1,2/1.4-還元のまとめ

 もちろんこれ以外にも多数報告がある。興味のあるかたはぜひ調べてみて欲しい。あなたならどの反応を選びますか?

化学って面白いよね!!

参考文献

  1. Oshima, K. et al. Chem Lett. 1991, 1847. doi:10.1246/cl.1991.1847 
  2. Noyori, R. et al. J. Org. Chem. 197237, 1542.
  3. Shibasaki, M. et al. J. Am. Chem. Soc. 1990112, 4907.
  4. Keinan, E. Tetrahedron Lett. 198223, 477. doi:10.1016/S0040-4039(00)86866-5
  5. Dhillon, R. S. et al. Tetrahedron Lett. 199536, 1107. doi:10.1016/0040-4039(94)02406-2
  6. Yanada, R. et al. Synlett 1995, 443. DOI: 10.1055/s-1995-5000
  7. Ikeno, T.  et al. Synlett 1999, 96. DOI: 10.1055/s-1999-2557
  8. Lipshutz, B. H. et al. Tetrahedron 200056, 2779. doi:10.1016/S0040-4020(00)00132-0
  9. Mori, A. et al. Tetrahedron 199955, 4573. doi:10.1016/S0040-4020(99)00141-6

(2001.7.2 by webmaster)
(2008.6.20 加筆修正 by cosine)
(2017.4.30 記事を移行 by webmaster)

Avatar photo

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. ヒュッケル法(前編)~手計算で分子軌道を求めてみた~
  2. 【速報】HGS 分子構造模型「 立体化学 学生用セット」販売再開…
  3. 知られざる法科学技術の世界
  4. 科学は探究心を与え続けてくれるもの:2016 ロレアル–ユネスコ…
  5. 化学者のためのエレクトロニクス入門① ~電子回路の歴史編~
  6. 異なる“かたち”が共存するキメラ型超分子コポリマーを造る
  7. マイクロ波の技術メリット・事業メリットをお伝えします!/マイクロ…
  8. 微生物細胞に優しいバイオマス溶媒 –カルボン酸系双性イオン液体の…

注目情報

ピックアップ記事

  1. 第16回 教科書が変わる心躍る研究を目指すー野崎京子教授
  2. アミジルラジカルで遠隔位C(sp3)-H結合を切断する
  3. コーンブルム酸化 Kornblum Oxidation
  4. 【日産化学 26卒】 【7/10(水)開催】START your ChemiSTORY あなたの化学をさがす 研究職限定 Chem-Talks オンライン大座談会
  5. 改正 研究開発力強化法
  6. 金触媒で変身できるEpoc保護基の開発
  7. ディーン・タンティロ Dean J. Tantillo
  8. アメリカ大学院留学:博士候補生になるための関門 Candidacy
  9. 有機合成化学協会誌2019年10月号:芳香族性・O-プロパルギルオキシム・塩メタセシス反応・架橋型人工核酸・環状ポリアリレン・1,3-双極子付加環化反応
  10. 全薬工業とゼファーマ、外用抗真菌薬「ラノコナゾール」配合の水虫治療薬を発売

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2001年7月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

ミトコンドリア内タンパク質を分解する標的タンパク質分解技術「mitoTPD」の開発

第 631 回のスポットライトリサーチは、東北大学大学院 生命科学研究科 修士課程2…

永木愛一郎 Aiichiro Nagaki

永木愛一郎(1973年1月23日-)は、日本の化学者である。現在北海道大学大学院理学研究院化学部…

11/16(土)Zoom開催 【10:30~博士課程×女性のキャリア】 【14:00~富士フイルム・レゾナック 女子学生のためのセミナー】

化学系の就職活動を支援する『化学系学生のための就活』からのご案内です。11/16…

KISTEC教育講座『中間水コンセプトによるバイオ・医療材料開発』 ~水・生体環境下で優れた機能を発揮させるための材料・表面・デバイス設計~

 開講期間 令和6年12月10日(火)、11日(水)詳細・お申し込みはこちら2 コースの…

【太陽ホールディングス】新卒採用情報(2026卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

産総研の研究室見学に行ってきました!~採用情報や研究の現場について~

こんにちは,熊葛です.先日,産総研 生命工学領域の開催する研究室見学に行ってきました!本記事では,産…

第47回ケムステVシンポ「マイクロフローケミストリー」を開催します!

第47回ケムステVシンポジウムの開催告知をさせて頂きます!第47回ケムステVシンポジウムは、…

【味の素ファインテクノ】新卒採用情報(2026卒)

当社は入社時研修を経て、先輩指導のもと、実践(※)の場でご活躍いただきます。「いきなり実践で…

MI-6 / エスマット共催ウェビナー:デジタルで製造業の生産性を劇的改善する方法

開催日:2024年11月6日 申込みはこちら開催概要デジタル時代において、イノベーション…

窒素原子の導入がスイッチング分子の新たな機能を切り拓く!?

第630回のスポットライトリサーチは、大阪公立大学大学院工学研究科(小畠研究室)博士後期課程3年の …

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP