[スポンサーリンク]

化学者のつぶやき

“結び目”をストッパーに使ったロタキサンの形成

[スポンサーリンク]

分子ノットの嵩高さを利用した新規ロタキサンを合成した。末端に分子ノットをストッパーとして形成することで、大環状分子は紐状分子から外れることなく固定される。

 分子ノットの応用

分子ノットは、1989年にSauvageらにより初めて合成された、結び目構造をもつ分子である[1]。結ぶことで引き起こされる大きなコンフォメーション変化から、新たな機能性分子の設計・創出につながることが期待できる。

これまで様々な分子ノットが合成されているが、応用例は限られる[2]。例えば、ハロゲン選択的なアニオンの取り込みを可能にした例がある(図1A)[3a]。また、結び目は右回り、左回りをもつことから軸不斉をもつが、その性質を利用した不斉触媒(図1B)[3b]、さらにはアロステリック調節によりON/OFF可能なルイス酸触媒(図1C)[3c]としての利用が知られる。いずれも、ナノスケールで起こる現象や反応に応用した例である。それに対して、我々の生活で見られるような裁縫の玉結びや命綱のような“結び目“としての機能など、マクロスケールで見られる性質を利用した例は未だない。
今回、Leigh教授らは、自ら開発したランタノイドイオンによるノットの形成[3b]を用いて、分子ノットを玉結びのように利用した新規ロタキサンの合成に成功したので紹介する(図1D)。

図1. 分子ノットを利用した反応 (出典:論文より改変)

 

“Securing a Supramolecular Architecture By Tying a Stopper Knot”
Leigh, D. A.; Pirvu, L.; Schaufelberger, F.; Tetlow, D. J.; Zhang, L.Angew. Chem., Int. Ed. 2018, Early View DOI: 10.1002/anie.201803871

論文著者の紹介

研究者:David A. Leigh 
研究者の経歴:(一部抜粋)
1987 Ph.D, University of Sheffield (Prof.J. F. Stoddart)
1998-2001 Chair of Synthetic Chemistry, University of Warwick
2001-2012Forbes Chair of Organic Chemistry, University of Edinburgh
2012- Professor of Organic Chemistry, University of Manchester
研究内容:Mechanically-Interlocked Moleculesを用いたナノマシンの創製研究

論文の概要

ロタキサンは、通常、大環状分子が棒状分子を貫通しており、その棒状分子の両末端に嵩高い骨格を共有結合でつなぎ、それをストッパーとすることで形成されている。

今回著者らは、分子ノット形成による立体的な嵩の増加をロタキサン構造のストッパーに応用すべく、一方の末端にノット形成可能なトリスピリジンジカルボキシアミド(TPCA)部位をもつ紐状分子L1を合成した。このノット形成可能なL1は大環状分子DB24C8とのロタキサン形成において以下のように機能する(図2)。

  1. 酸性条件下、L1のアミン部位をアンモニウムとすることで、DB24C8が紐状分子を通り、擬ロタキサンL1H+·DB24C8が生成する。
  2. ルテチウムイオンの添加により、ルテチウムイオンが紐状分子のTPCA部位に配位し、分子ノットを形成する。この分子ノットがストッパーとなり、ロタキサン1H+となる。
  3. 塩基により1H+のアンモニウム部位を脱プロトン化することで、大環状分子はアンモニウム部位から解放され、自由度が増す。その状態でもノット部位がストッパーとして機能し、大環状分子は紐状分子から外れることなくロタキサン構造を保持できた。
  4. 最後に、Et4NFにてルテチウムイオンを除去することで、分子ノットが解け、ロタキサン構造は消失した。各々の構造は、1H NMRやMSスペクトル解析により確認している。

詳細な解析は論文を参照されたい。
今回、分子ノットを実生活でも見られるような”結び目“として機能させることに成功した。今後、このようなプロセスが、新規機能性分子や材料設計につながるのではないだろうか。

図2. ロタキサン構造の設計 (出典:論文より改変)

 

参考文献

  1. Dietrich-Buchecker, C. O.; Sauvage, J.-P. Angew. Chem., Int. Ed. Engl.1989, 28, 189. DOI: 10.1002/anie.198901891.
  2. Fielden, S. D. P.; Leigh, D. A.; Woltering, S. L. Angew.  Chem,. Int. Ed. 2017, 56, 11166. DOI: 10.1002/anie.201702531.
  3. (a) Ayme, J.-F.; Beves, J. E.; Campbell, C. J.; Gil-Ramírez, G.; Leigh, D. A.; Stephens, A. J. J. Am. Chem. Soc. 2015, 137, 9812. DOI: 10.1021/jacs.5b06340.(b) Gil-Ramírez, G.; Hoekman, S.; Kitching, M. O.; Leigh, D. A.; Vitorica-Yrezabal, I. J.; Zhang, G. J. Am. Chem. Soc. 2016,138, 13159. DOI: 10.1021/jacs.6b08421.(c) Marcos, V.; Stephens, A. J.; Jaramillo-Garcia, J.; Nussbaumer, A. L.; Woltering, S. L.; Valero, A.; Lemonnier, J.-F.; Vitorica-Yrezabal, I. J.; Leigh, D. A. Science 2016,352, 1555. DOI: 10.1126/science.aaf3673.
山口 研究室

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 2007年度ノーベル化学賞を予想!(3)
  2. クリック反応の反応機構が覆される
  3. 2014年ノーベル化学賞・物理学賞解説講演会
  4. 有機化学クロスワードパズル
  5. 「社会との関係を見直せ」とはどういうことか
  6. 比色法の化学(前編)
  7. 近傍PCET戦略でアルコキシラジカルを生成する
  8. メチオニン選択的なタンパク質修飾反応

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. シュレンクフラスコ(Schlenk flask)
  2. リック・ダンハイザー Rick L. Danheiser
  3. フランク・グローリアス Frank Glorius
  4. もう入れたよね?薬学会年会アプリ
  5. 有機反応を俯瞰する ーヘテロ環合成: C—C 結合で切る
  6. メソリティック開裂を経由するカルボカチオンの触媒的生成法
  7. 還元的にアルケンを炭素官能基で修飾する
  8. レザ・ガディリ M. Reza Ghadiri
  9. ケミストリー四方山話-Part I
  10. エリック・フェレイラ Eric M. Ferreira

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

スポットライトリサーチムービー:動画であなたの研究を紹介します

5年前、ケムステ15周年の際に新たな試みとしてはじめたコンテンツ「スポットライトリサーチ」。…

第110回―「動的配座を制御する化学」Jonathan Clayden教授

第110回の海外化学者インタビューは、ジョナサン・クレイデン教授です。マンチェスター大学化学科(訳注…

化学研究で役に立つデータ解析入門:エクセルでも立派な解析ができるぞ編

化学分野でのAIを使った研究が多数報告されていてデータ解析は流行のトピックとなっていますが、専門外か…

高分子化学をふまえて「神経のような動きをする」電子素子をつくる

第267回のスポットライトリサーチは、東北大学大学院工学研究科 バイオ工学専攻 三ツ石研究室 助教の…

アルケンのエナンチオ選択的ヒドロアリール化反応

パラジウム触媒を用いたアルケンの還元的Heck型ヒドロアリール化反応が開発された。容易に着脱可能なキ…

第109回―「サステイナブルな高分子材料の創製」Andrew Dove教授

第109回の海外化学者インタビューは、アンドリュー・ダヴ教授です。ワーウィック大学化学科に所属(訳注…

蛍光異方性 Fluorescence Anisotropy

蛍光異方性(fluorescence anisotropy)とは溶液中で回転する分子の回転速…

(–)-Spirochensilide Aの不斉全合成

(–)-Spirochensilide Aの初の不斉全合成が達成された。タングステンを用いたシクロプ…

Chem-Station Twitter

PAGE TOP