[スポンサーリンク]

archives

グラフェンの量産化技術と次世代デバイスへの応用【終了】

日時        : 2011年1月12日(水) 10:15~16:30
会場        : 東京・大田区蒲田 大田区産業プラザ(PiO) 6F C会議室
≪会場地図はこちら≫
受講料     :
(税込) 47,250円
 ⇒E-mail案内登録会員 44,800円
  ※資料・昼食付
上記価格より:<2名で参加の場合1名につき7,350円割引><3名で参加の場合1名につき10,500円割引>(同一法人に限ります)

申し込みはこちらをクリック!
講師        :第1部 グラフェンの開発・量産化技術動向と利用への展望
  ≪10:15~11:30>>
(独)産業技術総合研究所  ナノチューブ応用研究センター ナノ物質コーティングチーム 長谷川 雅考 氏
第2部 グラフェンを用いた透明導電膜の作製と有機薄膜素子への応用
  ≪11:45~13:00>>
埼玉大学 大学院理工学研究科 准教授 上野 啓司 氏
第3部 グラフェンの高容量キャパシタ電極への応用
  ≪13:45~15:00>>
東北大学 多元物質科学研究所 教授 本間 格 氏
第4部 グラフェンの化学的合成とドーピング
  ≪15:15~16:30>>
東京大学 大学院新領域創成科学研究科 教授 斉木 幸一朗 氏
講演内容  :第1部 グラフェンの開発・量産化技術動向と利用への展望
<趣旨>
 ITOが主流である透明導電膜は、太陽電池、各種ディスプレイ、タッチパネルなどでの重要性が高まる中で、インジウムの需給問題の早期解決が迫られている。炭素ナノ材料であるグラフェンはITO代替の透明導電膜材料として、幅広い工業的応用が期待されている。グラフェンによるITO代替の実現には、工業生産を目標とする合成法の確立が必須である。本講演ではグラフェンの開発状況を概観し、プラズマCVDを用いた低温合成による量産化技術の可能性と利用への展望を議論する。
1.グラフェンの形成法の概観
 1.1 剥離などによるグラフェンの形成
 1.2 Niを基材とするグラフェンの熱CVD
 1.3 Cuを基材とするグラフェンの熱CVD
 1.4 Ni, Cu上のグラフェンCVD成長機構
2.産総研でのグラフェンのCVD合成の試み
 2.1 グラフェンのCVDでの基材の品質の影響
 2.2 マイクロ波プラズマCVDによる低温・高速・大面積成膜
 2.3 電気特性、光学特性
 2.4 タッチパネルの試作
  □質疑応答・名刺交換□
第2部 グラフェンを用いた透明導電膜の作製と有機薄膜素子への応用
<趣旨>
 グラファイトの構成単位である炭素シート「グラフェン」は非常に高い移動度を持つことから,ITOに代わる新しい透明導電膜材料としての応用が期待されている。本講演では,グラフェン透明導電膜を溶液塗布法によって簡便に形成する手法について解説し,続いて有機半導体薄膜素子への応用に関する我々の研究成果を紹介する。
1. グラファイトの単層剥離,可溶化とグラフェン透明導電膜形成
 1.1 グラフェン透明導電膜形成手法の概観
 1.2 グラファイトの化学的酸化と単層剥離による可溶化酸化グラフェン形成
 1.3 可溶化酸化グラフェンの塗布,還元によるグラフェン透明導電膜形成
2.グラフェン透明導電膜の構造と物性
 2.1 グラフェン透明導電膜構造
 2.2 グラフェン透明導電膜の電気的,光学的特性
3.グラフェン透明導電膜の有機薄膜素子への応用
 3.1 有機薄膜太陽電池への応用
 3.2 透明有機薄膜電界効果トランジスタへの応用
 3.3 グラフェン・酸化グラフェン塗布膜の新しい応用
  □質疑応答・名刺交換□
第3部 グラフェンの高容量キャパシタ電極への応用
<趣旨>
 グラフェンの量産化プロセスの開発、およびこれらの単原子層シート電極の構造解析と電気化学特性に関して紹介する。大容量キャパシタ、リチウム電池などの次世代蓄電デバイスへの応用を検討する。
1.グラフェンの量産化プロセス
 1.1 超臨界流体プロセス
 1.2 Hummers法
2.グラフェンの構造解析
 2.1 単原子層構造と積層化
 2.2 グラフェン層間距離の制御
3.グラフェンのキャパシタ電極への応用
 3.1 単原子構造とEDLC容量
 3.2 高容量化への材料設計
4.他の蓄電デバイスへの応用
 4.1 リチウム電池
 4.2 その他
  □質疑応答・名刺交換□
第4部 グラフェンの化学的合成とドーピング
1.化学的合成法
 1.1 トップダウン法とボトムアップ法
2.グラフェンへのドーピング
 2.1 ドーピングの目的と意義
 2.2 代表的な研究例の紹介

<
div style=”text-align: left;”>

3.我々の取り組み
 3.1 窒素源の探索
 3.2 CNWにおけるキャリア反転
  □質疑応答・名刺交換□
※講演内容は変更となる場合がございます。ご了承ください。
申し込みはこちらをクリック!
The following two tabs change content below.
webmaster
Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. ≪Excel演習で学ぶ≫化学プロセスにおける研究開発時のコスト試…
  2. ロジウム(I)触媒を用いるアリールニトリルの炭素‐シアノ基選択的…
  3. C60MC12
  4. ケテンジチオアセタール化による一炭素増炭反応
  5. アルミニウム-ポルフィリン錯体を用いる重合の分子量制御
  6. フルオラス向山試薬 (Fluorous Mukaiyama re…
  7. 取扱いが容易なトリフルオロアセチル化試薬
  8. 集光型太陽光発電システムの市場動向・技術動向【終了】

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ショッテン・バウマン反応 Schotten-Baumann Reaction
  2. ハートウィグ ヒドロアミノ化反応 Hartwig Hydroamination
  3. 大気中のメタン量、横ばいに/温暖化防止に朗報か
  4. ビシナルジハライドテルペノイドの高効率全合成
  5. ロビンソン・ガブリエルオキサゾール合成 Robinson-Gabriel Oxazole Synthesis
  6. 燃えないカーテン
  7. 力を加えると変色するプラスチック
  8. グローバルCOE審査結果
  9. 活性マグネシウム
  10. 光延反応 Mitsunobu Reaction

関連商品

注目情報

注目情報

最新記事

ライトケミカル工業株式会社ってどんな会社?

ライトケミカル工業は自社製品を持たず、研究開発もしない、更に営業マンもいない独立資本の受託専門会社(…

クラリベイト・アナリティクスが「引用栄誉賞2018」を発表

9月20日、クラリベイト・アナリティクス社から2018年の引用栄誉賞が発表されました。本賞は…

AIで世界最高精度のNMR化学シフト予測を達成

理化学研究所(理研)環境資源科学研究センター環境代謝分析研究チームの菊地淳チームリーダー、伊藤研悟特…

イミニウム励起触媒系による炭素ラジカルの不斉1,4-付加

2017年、カタルーニャ化学研究所・Paolo Melchiorreらは、イミニウム有機触媒系を可視…

ケムステ版・ノーベル化学賞候補者リスト【2018年版】

各媒体からかき集めた情報を元に、「未来にノーベル化学賞の受賞確率がある化学者」をリストアップしていま…

巨大複雑天然物ポリセオナミドBの細胞死誘導メカニズムの解明

第161回目のスポットライトリサーチは、早田敦 (はやた あつし)さんにお願いしました。早田…

PAGE TOP