[スポンサーリンク]

archives

グラフェンの量産化技術と次世代デバイスへの応用【終了】

[スポンサーリンク]

日時        : 2011年1月12日(水) 10:15~16:30
会場        : 東京・大田区蒲田 大田区産業プラザ(PiO) 6F C会議室
≪会場地図はこちら≫
受講料     :
(税込) 47,250円
 ⇒E-mail案内登録会員 44,800円
  ※資料・昼食付
上記価格より:<2名で参加の場合1名につき7,350円割引><3名で参加の場合1名につき10,500円割引>(同一法人に限ります)

申し込みはこちらをクリック!
講師        :第1部 グラフェンの開発・量産化技術動向と利用への展望
  ≪10:15~11:30>>
(独)産業技術総合研究所  ナノチューブ応用研究センター ナノ物質コーティングチーム 長谷川 雅考 氏
第2部 グラフェンを用いた透明導電膜の作製と有機薄膜素子への応用
  ≪11:45~13:00>>
埼玉大学 大学院理工学研究科 准教授 上野 啓司 氏
第3部 グラフェンの高容量キャパシタ電極への応用
  ≪13:45~15:00>>
東北大学 多元物質科学研究所 教授 本間 格 氏
第4部 グラフェンの化学的合成とドーピング
  ≪15:15~16:30>>
東京大学 大学院新領域創成科学研究科 教授 斉木 幸一朗 氏
講演内容  :第1部 グラフェンの開発・量産化技術動向と利用への展望
<趣旨>
 ITOが主流である透明導電膜は、太陽電池、各種ディスプレイ、タッチパネルなどでの重要性が高まる中で、インジウムの需給問題の早期解決が迫られている。炭素ナノ材料であるグラフェンはITO代替の透明導電膜材料として、幅広い工業的応用が期待されている。グラフェンによるITO代替の実現には、工業生産を目標とする合成法の確立が必須である。本講演ではグラフェンの開発状況を概観し、プラズマCVDを用いた低温合成による量産化技術の可能性と利用への展望を議論する。
1.グラフェンの形成法の概観
 1.1 剥離などによるグラフェンの形成
 1.2 Niを基材とするグラフェンの熱CVD
 1.3 Cuを基材とするグラフェンの熱CVD
 1.4 Ni, Cu上のグラフェンCVD成長機構
2.産総研でのグラフェンのCVD合成の試み
 2.1 グラフェンのCVDでの基材の品質の影響
 2.2 マイクロ波プラズマCVDによる低温・高速・大面積成膜
 2.3 電気特性、光学特性
 2.4 タッチパネルの試作
  □質疑応答・名刺交換□
第2部 グラフェンを用いた透明導電膜の作製と有機薄膜素子への応用
<趣旨>
 グラファイトの構成単位である炭素シート「グラフェン」は非常に高い移動度を持つことから,ITOに代わる新しい透明導電膜材料としての応用が期待されている。本講演では,グラフェン透明導電膜を溶液塗布法によって簡便に形成する手法について解説し,続いて有機半導体薄膜素子への応用に関する我々の研究成果を紹介する。
1. グラファイトの単層剥離,可溶化とグラフェン透明導電膜形成
 1.1 グラフェン透明導電膜形成手法の概観
 1.2 グラファイトの化学的酸化と単層剥離による可溶化酸化グラフェン形成
 1.3 可溶化酸化グラフェンの塗布,還元によるグラフェン透明導電膜形成
2.グラフェン透明導電膜の構造と物性
 2.1 グラフェン透明導電膜構造
 2.2 グラフェン透明導電膜の電気的,光学的特性
3.グラフェン透明導電膜の有機薄膜素子への応用
 3.1 有機薄膜太陽電池への応用
 3.2 透明有機薄膜電界効果トランジスタへの応用
 3.3 グラフェン・酸化グラフェン塗布膜の新しい応用
  □質疑応答・名刺交換□
第3部 グラフェンの高容量キャパシタ電極への応用
<趣旨>
 グラフェンの量産化プロセスの開発、およびこれらの単原子層シート電極の構造解析と電気化学特性に関して紹介する。大容量キャパシタ、リチウム電池などの次世代蓄電デバイスへの応用を検討する。
1.グラフェンの量産化プロセス
 1.1 超臨界流体プロセス
 1.2 Hummers法
2.グラフェンの構造解析
 2.1 単原子層構造と積層化
 2.2 グラフェン層間距離の制御
3.グラフェンのキャパシタ電極への応用
 3.1 単原子構造とEDLC容量
 3.2 高容量化への材料設計
4.他の蓄電デバイスへの応用
 4.1 リチウム電池
 4.2 その他
  □質疑応答・名刺交換□
第4部 グラフェンの化学的合成とドーピング
1.化学的合成法
 1.1 トップダウン法とボトムアップ法
2.グラフェンへのドーピング
 2.1 ドーピングの目的と意義
 2.2 代表的な研究例の紹介

<
div style=”text-align: left;”>

3.我々の取り組み
 3.1 窒素源の探索
 3.2 CNWにおけるキャリア反転
  □質疑応答・名刺交換□
※講演内容は変更となる場合がございます。ご了承ください。
申し込みはこちらをクリック!
Avatar photo

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. バトフェナントロリン : Bathophenanthroline…
  2. マテリアルズ・インフォマティクスを実践するためのベイズ最適化入門…
  3. セミナーチャンネルを開設
  4. MNBA脱水縮合剤
  5. 高分子鎖デザインがもたらすポリマーサイエンスの再創造 進化する高…
  6. 製造業の研究開発、生産現場におけるDX×ノーコード
  7. 太陽電池セル/モジュール封止材料・技術【終了】
  8. オルトチタン酸テトライソプロピル:Tetraisopropyl …

注目情報

ピックアップ記事

  1. CSJジャーナルフォーラム「ジャーナルの将来像を考える」
  2. Grignard反応剤が一人二役!? 〜有機硫黄化合物を用いるgem-ジフルオロアルケン類の新規合成法〜
  3. 「遷移金属を用いてタンパク質を選択的に修飾する」ライス大学・Ball研より
  4. Wei-Yu Lin教授の講演を聴講してみた
  5. 第78回―「膜タンパク質の分光学的測定」Judy Kim教授
  6. 材料開発における生成AIの活用方法
  7. 【追悼企画】水銀そして甘み、ガンへー合成化学、創薬化学への展開ー
  8. 肝はメチル基!? ロルカセリン
  9. 【書籍】「世界一美しい数学塗り絵」~宇宙の紋様~
  10. 超原子価ヨウ素 Hypervalent Iodine

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2011年1月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

2024年ノーベル化学賞は、「タンパク質の計算による設計・構造予測」へ

2024年10月9日、スウェーデン王立科学アカデミーは、2024年のノーベル化学賞を発表しました。今…

デミス・ハサビス Demis Hassabis

デミス・ハサビス(Demis Hassabis 1976年7月27日 北ロンドン生まれ) はイギリス…

【書籍】化学における情報・AIの活用: 解析と合成を駆動する情報科学(CSJカレントレビュー: 50)

概要これまで化学は,解析と合成を両輪とし理論・実験を行き来しつつ発展し,さまざまな物質を提供…

有機合成化学協会誌2024年10月号:炭素-水素結合変換反応・脱芳香族的官能基化・ピクロトキサン型セスキテルペン・近赤外光反応制御・Benzimidazoline

有機合成化学協会が発行する有機合成化学協会誌、2024年10月号がオンライン公開されています。…

レジオネラ菌のはなし ~水回りにはご注意を~

Tshozoです。筆者が所属する組織の敷地に大きめの室外冷却器がありほぼ毎日かなりの音を立て…

Pdナノ粒子触媒による1,3-ジエン化合物の酸化的アミノ化反応の開発

第629回のスポットライトリサーチは、関西大学大学院 理工学研究科(触媒有機化学研究室)博士課程後期…

第4回鈴木章賞授賞式&第8回ICReDD国際シンポジウム開催のお知らせ

計算科学,情報科学,実験科学の3分野融合による新たな化学反応開発に興味のある方はぜひご参加ください!…

光と励起子が混ざった準粒子 ”励起子ポラリトン”

励起子とは半導体を励起すると、電子が価電子帯から伝導帯に移動する。価電子帯には電子が抜けた後の欠…

三員環内外に三連続不斉中心を構築 –NHCによる亜鉛エノール化ホモエノラートの精密制御–

第 628 回のスポットライトリサーチは、東北大学大学院薬学研究科 分子薬科学専…

丸岡 啓二 Keiji Maruoka

丸岡啓二 (まるおか けいじ)は日本の有機化学者である。京都大学大学院薬学研究科 特任教授。専門は有…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP