[スポンサーリンク]

スポットライトリサーチ

「非晶質ニッケルナノ粒子」のユニークな触媒特性

 

優れた研究成果を若手の言葉と共に紹介していくスポットライトリサーチ。第6回目となる今回は、大阪大学大学院基礎工学研究科 真島研究室百合野大雅 特任助教にお願いしました。百合野先生は京都大学 丸岡研究室で博士号を取得後、2013年より現職に就き、アカデミックキャリアをスタートされています。博士課程の有機触媒研究でReaxys PhD Prize Finalistにも選定されている、今後が嘱望される研究者の一人です。

 

そんな百合野先生ですが、今回プレスリリースと共に公表された論文は、かつてのバックグラウンドから一段と飛躍が見られる成果となっております。

Salt-free Reduction of Nonprecious Transition Metal Compounds: Generation of Amorphous Ni Nanoparticles for Catalytic C—C Bond Formation”
Taiga Yurino, Yohei Ueda, Yoshiki Shimizu, Shinji Tanaka, Haruka Nishiyama, Hayato Tsurugi, Kazuhiko Sato, Kazushi Mashima
Angew. Chem. Int. Ed. 2015,  DOI: 10.1002/anie.201507902

一体どんな研究成果なのでしょうか?百合野先生に尋ねてみました。それではご覧ください!

 

Q1. 今回のプレス対象となったのはどんな研究ですか?簡単にご説明ください。

「カップリング反応に対して高い触媒活性を持つ非晶質Niナノ粒子の開発」の概略を図1に表しています。

パラジウムなどの貴金属ナノ粒子は、カップリング反応に対して高い触媒活性を示します。その一方で、安価な卑金属であるNiなどのナノ粒子は、粒径が小さく結晶性が高いにも関わらず、ほとんど触媒活性を示しません。我々がこれまでに開発した有機ケイ素還元剤を用いると、温和な条件でNi(acac)2を還元することが可能であり、その結果、予想に反して非晶質のニッケルナノ粒子が生成すること、また、ハロゲン化アリールを用いた還元的カップリング反応の優れた触媒となることを見いだしました。従来あまり注目されていなかったナノ粒子の結晶性が触媒活性に関係する重要なパラメーターであることは、驚きでした。

図1:非晶質Niナノ粒子触媒の合成とハロゲン化アリールの還元的カップリング反応

図1:非晶質Niナノ粒子触媒の合成とハロゲン化アリールの還元的カップリング反応

 

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

前周期遷移金属錯体が有機ケイ素還元剤1により還元できることがわかっていましたので、劒隼人准教授と西山悠さん(D2)と一緒に、第一遷移金属との異種金属錯体合成に取り組んでいました。反応後、シュレンク管内に沈む金属粉末の存在が気になり、ためしに塩化銅と1のみで反応を行ったところ、速やかに銅粉へと直接還元され、唖然となってしまいました。「この還元反応が円滑に行くなら、銅粉末が過剰量必要な古典的Ullmannカップリング反応を触媒化できる!粒径が細かいなら高い活性も期待できる!」と気を取り直し、この結果をすぐにポジティブに捉え、古典的反応の触媒化に目標を定めました。この発想自体は、とてもシンプルでしたが、その後の研究は、予想と異なる結果の連続であったが故に、想定を大きく越えて隘路に迷い込んだ時期を乗り越えなくてはなりませんでした。

 

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

なによりも難しかったのは、「触媒活性種の同定」でした。まず、われわれの方法で得たNiナノ粒子は、粒径が大きいにも関わらず触媒活性が高いという結果でした。一方、比較の為、既存のNi錯体還元法により合成したNiナノ粒子は、粒径が小さいにも関わらず、まったく触媒活性を示しませんでした。この結果には、頭を抱えることになりました。清水禎樹博士(産総研)に測定いただいたTEMデータの解析の過程で「ナノ粒子が非晶質である」という事実が本触媒の大きな特徴であることに行き当たりました。その後の上田耀平君(M1)の努力により、非晶質ナノ粒子が高活性なNi種の放出と回収を繰り返し、それが真の触媒種であるという結論にたどり着きました。

 

Q4. 将来は化学とどう関わっていきたいですか?

これまで常識と思われて見過ごされていた部分に光を当てる、「こんなことできるはずがない」と半ば諦められていた部分をひっくり返すようなことができれば、と思います。また、いろいろな分野の研究者と軽いフットワークで積極的に関わり、新しい科学大系を作っていきたいと考えています。今回、共同研究という私自身にとって初めての機会をいただき、ジャンルの異なる専門家が多視点で同じ事象を直接見る重要性、そして、そこから次々にアイデアが生まれてくる素晴らしさを体感しました。この先、有機化学という自分のストロングポイントを「有機化学」だけにぶつけるのではなく、自分がまだ見えていない少し離れたジャンルの問題解決にも生かせれば、と願っています。

 

Q5. 最後に、読者の皆さんにメッセージをお願いします。

「たとえまるで夢物語でも、まずは思いついたらやってみる、やってみてからしっかり考える」というのが私のモットーであり、研究スタイルです。全部思い通りに行けば儲けもんですが、大抵そんなことはありません。でも、そこでただ一喜一憂するだけでなく、なぜ思い通りにいった/いかなかったのか、あるいは、なぜ想定外のことが起こってしまったのか、そしてこの想定外は実は大変なお宝じゃないのか?ほんのちょっとしたことでも、しっかり考えて自分のものにできれば化学はもっと楽しくなるし、ワクワクや新しいアイデアは増えていき、新たな夢物語が生まれていきます。データはネガティブ、されどポジティブ。楽しい化学ライフを!

 

関連リンク

 

研究者の略歴

Taiga_Yurino百合野 大雅

所属:大阪大学大学院基礎工学研究科 物質創成専攻 機能物質化学領域
真島研究室 特任助教

テーマ:「有機ケイ素還元剤を応用した有機合成反応の開発」

経歴:1985年京都府生まれ。京都大学卒業後、2008年より同大学院理学研究科へ進学(丸岡啓二研究室)。2010年より日本学術振興会特別研究員(DC1)。2013年5月博士・理学取得。2013年6月より現職。大津会議フェロー。2012年、日本化学会第92春季年会・学生講演賞、第32回有機合成若手セミナー・優秀研究発表賞。2014年、Reaxys PhD Prize 2014 Finalistに選出。

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ビュッヒ・フラッシュクロマト用カートリッジもれなくプレゼント!
  2. 分子レベルでお互いを見分けるゲル
  3. サイエンスアゴラの魅力を聞く-「iCeMS」水町先生
  4. タクミナ「スムーズフローポンプQ」の無料モニターキャンペーン
  5. 化学Webギャラリー@Flickr 【Part 3】
  6. 印象に残った天然物合成1
  7. 無水酢酸は麻薬の原料?
  8. 投票!2016年ノーベル化学賞は誰の手に??

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 相田 卓三 Takuzo Aida
  2. トロンボキサンA2 /Thromboxane A2
  3. 科学は探究心を与え続けてくれるもの:2016 ロレアル–ユネスコ女性科学者 日本奨励賞
  4. Lindau Nobel Laureate Meeting 動画集のご紹介
  5. 光で脳/神経科学に革命を起こす「オプトジェネティクス」
  6. ノリッシュ反応 Norrish Reaction
  7. 密度汎関数法の基礎
  8. 右田・小杉・スティル クロスカップリング Migita-Kosugi-Stille Cross Coupling
  9. 小児薬、大人用を転用――アステラス、抗真菌剤
  10. NIMSフォーラム 「未来のエネルギーをつむぐ新材料・新物質、ここに集結!」

関連商品

注目情報

注目情報

最新記事

ルミノール誘導体を用いるチロシン選択的タンパク質修飾法

2015年、東京工業大学・中村浩之らは、ルミノール誘導体と鉄-ポルフィリン複合体(ヘミン)を用い、チ…

酵素触媒によるアルケンのアンチマルコフニコフ酸化

酵素は、基質と複数点で相互作用することにより、化学反応を厳密にコントロールしています。通常のフラ…

イオンの出入りを制御するキャップ付き分子容器の開発

第124回のスポットライトリサーチは、金沢大学 理工研究域物質化学系錯体化学研究分野(錯体化学・超分…

リチウムイオン電池の課題のはなし-1

Tshozoです。以前リチウムイオン電池に関するトピックを2つほど紹介した(記事:リチウムイ…

アルコールをアルキル化剤に!ヘテロ芳香環のC-Hアルキル化

2015年、プリンストン大学・D. W. C. MacMillanらは、水素移動触媒(HAT)および…

三種類の分子が自発的に整列した構造をもつ超分子共重合ポリマーの開発

第123回のスポットライトリサーチは、テキサス大学オースティン校博士研究員(Jonathan L. …

Chem-Station Twitter

PAGE TOP