[スポンサーリンク]

一般的な話題

AI解析プラットフォーム Multi-Sigmaとは?

[スポンサーリンク]

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォームとなっております。株式会社エイゾスは2021年にリリースしたこのAI解析プラットフォームMulti-Sigmaおよび関連サービスを多くの皆様に展開中です。

複数のアウトプットを予測、多目的最適化(逆解析)

昨今のAIのツールの進化は目覚ましいものがあり、いわゆるAuto MLといわれる、ノーコードで機械学習・深層学習を活用するアプリも多く生まれています。現在、一般的な機械学習のツールは、予測のためのツールで、アウトプットは一つしか解析できないものがほとんどです。しかし、様々な現実の利用のシーンを考えると、それでは不十分なケースが多いのではないでしょうか。
例えば、アウトプットが複数必要な例として、セールスやマーケティングの例でいえば、お客様の満足度の評価軸や、あるいは売上と純利益など、アウトプットが複数あることが多いと思います。また、ものづくりの例で言えば、品質とコスト、あるいは機能については複数の評価軸があることが多いでしょう。こういったアウトプットが複数あるデータを解析するときに、既存Auto MLでは、アウトプットごとに学習データを用意して、解析を行う必要があります。
次に、最適化が必要な例として、お客様満足度を最大化するための営業活動や製品仕様を探索したり、あるいは品質やコスト、複数機能を同時に向上するための最適な製造条件を最適化したり、などが挙げられます。予測ができたら、次は最適な条件を探索したいというのは、一般的なニーズかと思います。
Multi-Sigmaは、アウトプットを複数同時に解析し、さらにそれら複数のアウトプットに対して逆解析を行うことを目的とした、極めてユニークなツールです。Multi-Sigmaでは、インプットは200パラメータ、アウトプットは100パラメータまで解析できるので、極端な例では、200のパラメータから100のパラメータを同時に予測するとともに、100のパラメータに対して、200のパラメータの最適な条件を探索することも可能です。その他にも、インプットに対して複数の制約を加えることも可能で、そのようなツールは世界に類を見ません。なぜ他のツールでは、それが難しいのか、それを本稿で説明します。

ほとんどの解析手法は、アウトプットを複数取れない

まず、昨今提供されているほとんどの解析手法は、アウトプットが一つしかとることができません。一方、深層学習の手法の一つであるニューラルネットワークは、アウトプットを複数とることができる極めて珍しい手法です。したがって、上記図の複数アウトプットをとれるツールは、基本的にはニューラルネットワークをベースにした技術が多くなっています。

予測と最適化は全く異なるアルゴリズム

一般的に、予測と最適化は、異なるアルゴリズムであるということを理解する必要があります。したがって、予測と最適化を行うためには、2つの異なるアルゴリズムを高度に融合する必要があります。近年、ベイズ最適化という、非常に便利な手法が提案され、特にマテリアルズ・インフォマティクスなどの材料開発分野を中心に、あっという間に利用者が広がりました。一見すると、ベイズ最適化は、いきなり最適化を行っているように見えるのですが、内部では、こちらも深層学習の手法の一つであるガウス過程回帰で予測モデルを作成し、準降下法で最適化するというステップで実装されている場合が多いです。
ガウス過程回帰は、原理的にアウトプットを一つしか取ることはできないので、現在、アウトプットが一つで、最適化できるツールは、ベイズ最適化をベースにした技術が多くなっています。また、近年では、複数のアウトプットを統合・単一指標化してベイズ最適化で多目的最適化する手法が提案されていますが、アウトプットを単一指標化してしまうため、各アウトプットの数値のバランスが考慮できません。また、通常の準降下法を用いたベイズ最適化では、最適解を一つしか提案できないため、多数のパレート解を得るためには、予測された最適解を真値として学習データに取り込み、別の最適解を提案する、というように、予測した点を真値として再学習することを繰り返すため、徐々に真値から乖離してしまう課題があります。Multi-Sigmaでの最適化は遺伝的アルゴリズムを使用しており、オリジナルの学習データのみを用いて再学習することなく複数のパレート解を得ることができる点で、精度の高い最適化が行えるのです。

予測AI×最適化AI

ニューラルネットワークとベイズ最適化(ガウス過程回帰)という深層学習の技術にふれましたが、この技術はまさに深層学習の2大技術で、用途に応じて両者を使い分けることが必要です。
Multi-Sigmaでは、ニューラルネットワーク解析とガウス過程回帰という深層学習の2大予測手法を切り替えて解析することができるとともに、遺伝的アルゴリズムという最適化の手法を前述の予測手法と高度に融合することで、複数のアウトプットを同時に予測するとともに、複数のアウトプットに対する逆解析を行うことを可能としています。遺伝的アルゴリズムも、AIの手法の一つとしてあげられることが多いので、いわば最適化のAIが予測のAIを使いながら、自動的に最適な条件を探索するという処理が行われています。
両方を使い分けることで、お互いの短所を補うことができ、現実の様々なケースに対して活用頂ける汎用的なツールになっていると考えています。

データに価値を、すべての人々にAIの力を

これは株式会社エイゾスとしてのビジョンです。AI、それはデータを価値に変える現代の錬金術と考えています。しかし、昨今のAIツールの開発スピードは凄まじく、極めて強力な技術である一方、現在はまだごく限られた人しか使いこなすことができていません。私たちは、製品やサービスを通じて、全ての人がAIの力を活用できる環境を整えることやデータを目に見える価値にすることのお手伝いをさせていただいております。
そのため、実験データをもとにする地に足のついた解析が可能で、研究開発現場に実用的なプラットフォーム開発を進めております。まずはお客様に満足していただき、そして、社会的な課題の解決、持続可能でスマートな社会創りを目指します。

【特徴】

1.ニューラルネットワークやベイズ最適化による予測
必要最小限のデータから解析が可能です。難解なハイパーパラメータの設定をお客様が行う必要はありません。自動調整技術(国際特許取得済)により高精度な予測が可能です。
2.感度分析を用いた要因分析
AIはブラックボックスと言われますが、Multi-Sigmaなら寄与度を数値で把握し評価できます。
3.多目的遺伝アルゴリズムによる最適化
複数の目的変数に対して、最大化、最小化、目標値を設定し、説明変数の最適化が可能です。最適化において、説明変数に制約を与えて解析をすることも可能です。
【対象分野】創薬・材料開発、マテリアルインフォマティクス、プロセスインフォマティクス、異常診断 等あらゆる問題に適用。
業務の属人化からの脱却、実験および解析の労力の大幅な削減にお役立てください。

【実績】

産総研の人工心臓のデザインの最適化の研究
NEDO アルミニウムのアップグレードリサイクルプロセスにおいて、18の実験データから6つの目的を同時に満たす製造条件の探索にも成功
https://storage.googleapis.com/aizoth-web-dev/uploads/article/thumnail/20210218_21_159.pdf
https://aizoth.com/research-project/nedo/

【受賞】

「エコテックグランプリ2021」:日鉄エンジニアリング賞&日本ユニシス BIPROGY賞
「第3回いばらきイノベーションアワード」:優秀賞
「第35回 中小企業優秀新技術・新製品賞」:ソフトウェア部門優秀賞
「第4回TCIベンチャーアワード」:優秀賞

社名 株式会社エイゾス(AIZOTH Inc.)
設立 2014年8月
所在地 茨城県つくば市吾妻一丁目5番地7

ダイワロイネットホテルつくばビル2階

拠点 つくば市、カリフォルニア州
代表者 河尻 理恵子
事業内容 AI解析プラットフォームの開発、販売、および関連サービスの提供
資本金 1000万円
製品ホームページ https://aizoth.com/service/multi-sigma/

本記事は株式会社エイゾス様からの寄稿となります。

Avatar photo

ケムステPR

投稿者の記事一覧

ケムステのPRアカウントです。募集記事や記事体広告関連の記事を投稿します。

関連記事

  1. ドラマチック有機合成化学: 感動の瞬間100
  2. 共役はなぜ起こる?
  3. J-STAGE新デザイン評価版公開 ― フィードバックを送ろう
  4. モータータンパク質に匹敵する性能の人工分子モーターをつくる
  5. アセタールで極性転換!CF3カルビニルラジカルの求核付加反応
  6. 神秘的な海の魅力的アルカロイド
  7. あなたの分子を特別なカタチに―「CrystalProtein.c…
  8. 不溶性アリールハライドの固体クロスカップリング反応

注目情報

ピックアップ記事

  1. マクファディン・スティーヴンス反応 McFadyen-Stevens Reaction
  2. キャロル転位 Carroll Rearrangement
  3. 世界の中分子医薬品市場について調査結果を発表
  4. 荒木飛呂彦のイラストがCell誌の表紙を飾る
  5. モザイクワクチン HIVから人類を守る救世主となるか
  6. 化学系企業の採用活動 ~現場の研究員視点で見ると~
  7. マリンス有機化学(上)-学び手の視点から-
  8. 信越化学、排水・排ガスからの塩水回収技術を開発
  9. 【書籍】ゼロからの最速理解 プラスチック材料化学
  10. 水素結合水H4O

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年7月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

山口 潤一郎 Junichiro Yamaguchi

山口潤一郎(やまぐちじゅんいちろう、1979年1月4日–)は日本の有機化学者である。早稲田大学教授 …

ナノグラフェンの高速水素化に成功!メカノケミカル法を用いた芳香環の水素化

第660回のスポットライトリサーチは、名古屋大学大学院理学研究科(有機化学研究室)博士後期課程3年の…

第32回光学活性化合物シンポジウム

第32回光学活性化合物シンポジウムのご案内光学活性化合物の合成および機能創出に関する研究で顕著な…

位置・立体選択的に糖を重水素化するフロー合成法を確立 ― Ru/C触媒カートリッジで150時間以上の連続運転を実証 ―

第 659回のスポットライトリサーチは、岐阜薬科大学大学院 アドバンストケミストリー…

【JAICI Science Dictionary Pro (JSD Pro)】CAS SciFinder®と一緒に活用したいサイエンス辞書サービス

ケムステ読者の皆様には、CAS が提供する科学情報検索ツール CAS SciFind…

有機合成化学協会誌2025年5月号:特集号 有機合成化学の力量を活かした構造有機化学のフロンティア

有機合成化学協会が発行する有機合成化学協会誌、2025年5月号がオンラインで公開されています!…

ジョセップ・コルネラ Josep Cornella

ジョセップ・コルネラ(Josep Cornella、1985年2月2日–)はスペイン出身の有機・無機…

電気化学と数理モデルを活用して、複雑な酵素反応の解析に成功

第658回のスポットライトリサーチは、京都大学大学院 農学研究科(生体機能化学研究室)修士2年の市川…

ティム ニューハウス Timothy R. Newhouse

ティモシー・ニューハウス(Timothy R. Newhouse、19xx年xx月x日–)はアメリカ…

熊谷 直哉 Naoya Kumagai

熊谷 直哉 (くまがいなおや、1978年1月11日–)は日本の有機化学者である。慶應義塾大学教授…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP