[スポンサーリンク]

一般的な話題

水素結合の発見者は誰?

 

さて化学大好きっ子の皆さんにクイズです。次のものの発見者は誰でしょう?

1、酸素

2、電子

3、ラジウム

4、中性子

5、水素結合

6、DNAの構造

電子はJ. J. Thomson、ラジウムはCurie夫妻、中性子はChadwick、DNAはWatsonCrick、それとWilkinsFranklinでしょうか。酸素は少し微妙ですがPriestlyか、ScheeleLavoisierが思い浮かんだことでしょう。

では水素結合はどうでしょうか?Paulingと答えたあなたはちょっと惜しいですね。化学結合の概念という意味ではPaulingでしょう。しかし違います。水素結合は高校の化学の教科書にも登場するほど重要な概念の発見であるにも関わらず、意外にも発見者はあまり知られていません。その名はTom Sidney MooreThomas Field Winmillです。

さて今回のポストでは今月の Nature Chemistry誌から、Nature誌のsenior editorであるPatrick Goymer氏のthesisというかessayをご紹介します。 先月のthesisはこちら

100 years of the hydrogen bond

Goymer, T. Nature Chem. 4, 863-864 (2012). doi:10.1038/nchem.1482

Goymer氏は水素結合の概念の提唱者の一人であるMooreのひ孫さんと結婚しています。その縁あっての寄稿という事もあるのでしょう。

ではそのMooreとはどんな方だったのでしょうか。Mooreはthe East London Technical College、現在のLondon大学Queen Maryでまず化学者のJ. T. Hewittと物理学者のR. A. Lehfeldtの下で18歳まで初期の科学教育を受けたようです。その後Oxford大学に移り、数学、化学で優秀な成績を修めた後、ドイツなどで研究に勤め1905年にはOxford大(Magdalen College)に戻っています。Oxfordでは研究室を主宰したというよりも今でいうところの非常勤のような職にあり、十分なポストとは言えませんでした。

丁度その時期に結婚、子供達の誕生もありお金には少し困っていたのかもしれません。Cambridge大学St John’s Collegeでも教鞭をとっていたそうです。そしてThomas Winmillは1911年にMagdalenでMooreの学生となります。しかし歳は半年ほどしか違わなかったようです。そこで行われたWinmillとMooreの共同研究の成果が1912年にJournal of Chemical Societyに掲載されることになるのです。

The state of amines in aqueous solution

Moore, T. S. and Winmill, T. F. J. Chem. Soc., Trans. 101, 1635–1676 (1912). doi:10.1039/CT9120101635

そうなんです。実は水素結合の概念が世に出てから今年は100年なんですね。

論文は主に二つの部分からなり、Winmillの行った様々なアミン塩酸塩のイオン化定数の測定と、Mooreによるその実験結果の解釈についてです。特にトリメチルアミンよりテトラメチルアンモニウム塩の方が強い塩基であるという事実の解釈によって、水素結合という概念を導き出しています。

N(CH3)3 + H2O → [N(CH3)3H]+ + OH

[N(CH3)4]OH → [N(CH3)4]+ + OH (より強い塩基)

さて、この論文のその後ですが、世の中の化学者に強烈なインパクトを与えるような一大センセーションを巻き起こしたのか?と問えば、それは残念ながらNoです。

When discussing the history of hydrogen bonding, Pauling points to a somewhat unremarkable-sounding study published in 1912.

科学上多くの重大な発見が初めひっそりとなされるのと同様に、世の化学者にはあまり反響が無かったようです。しかし、振り返ってみればこれほど大きな化学の発見はそうあるものではありません。にも関わらず現代まで続く以後の扱いは少し残念に思えます。

hydrogenbond_1.jpg

T. S. Mooreの肖像 図は文献より引用

論文の発表後、WinmillはCambridge大学に移り、その後British American Tobaccoのchairman(会長?)となります。一方のMooreは論文発表の次の年にはOxfordから十分なオファーをもらうことができず、 London大学のwomen’s collegeに移ることになり、1946年まで勤めます。

この移籍はひょっとしたら化学の世 界にとっては少し残念なことであったかもしれませんが、Mooreは尊敬される良き指導者となり、女子教育に尽力したとのことです。また、英国の化学会の副会長などを歴任するなど化学会に貢献しますが、それにしても偉大な発見を成し遂げた人物としてはあまりにも知られていなさすぎますね。DNAの二重らせんの構造だってこの水素結合の概念がなくては分からなかった訳ですし、もっとスポットライトを浴びてもいいのではと思いますが、高校の教科書に登場させるにはMooreとWinmillの実験の内容はちょっと難しすぎますか?

関連書籍

 

The following two tabs change content below.
ペリプラノン

ペリプラノン

有機合成化学が専門。主に天然物化学、ケミカルバイオロジーについて書いていきたいと思います。
ペリプラノン

最新記事 by ペリプラノン (全て見る)

関連記事

  1. 【速報】2015年ノーベル生理学・医学賞ー医薬品につながる天然物…
  2. もし炭素原子の手が6本あったら
  3. シンプルなα,β-不飽和カルベン種を生成するレニウム触媒系
  4. 近年の量子ドットディスプレイ業界の動向
  5. 第98回日本化学会春季年会 付設展示会ケムステキャンペーン Pa…
  6. 植物の受精効率を高める糖鎖「アモール」の発見
  7. 斬新な官能基変換を可能にするパラジウム触媒
  8. 冬虫夏草由来の画期的新薬がこん平さんを救う?ーFTY720

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 機構解明が次なる一手に繋がった反応開発研究
  2. 血液型をChemistryしてみよう!
  3. アジリジンが拓く短工程有機合成
  4. ブラシノステロイド (brassinosteroid)
  5. 化学反応を起こせる?インタラクティブな元素周期表
  6. MNBA脱水縮合剤
  7. 光触媒による水素生成効率が3%に
  8. 酢酸フェニル水銀 (phenylmercuric acetate)
  9. ストーク エナミン Stork Enamine
  10. 産学官若手交流会(さんわか)第19回ワークショップ のご案内

関連商品

注目情報

注目情報

最新記事

持続可能性社会を拓くバイオミメティクス

内容生物に学ぶ考え方は,ナイロンに見られるように古くからあった.近年,ナノテクノロジーの飛躍…

鉄カルベン活性種を用いるsp3 C-Hアルキル化

2017年、イリノイ大学 M. Christina Whiteらは鉄フタロシアニン触媒から生成するメ…

「生合成に基づいた網羅的な天然物全合成」—カリフォルニア大学バークレー校・Sarpong研より

「ケムステ海外研究記」の第19回目は、向井健さんにお願いしました。向井さんはカリフォルニア大…

研究者向けプロフィールサービス徹底比較!

研究者にとって、業績を適切に管理しアピールすることは重要です。以前にも少し触れましたが、科研費の審査…

天然有機化合物の全合成:独創的なものづくりの反応と戦略

概要生物活性天然有機化合物(天然物)は生命の40億年にわたる進化によって選択された高機能分子…

細菌を取り巻く生体ポリマーの意外な化学修飾

地球上に最もたくさんある有機化合物は何でしょう?それは、野菜や果物、紙、Tシャツ、木材、etc…身の…

Chem-Station Twitter

PAGE TOP