[スポンサーリンク]

一般的な話題

AIによる創薬に新たな可能性 その研究と最新技術に迫る ~米・Insitro社 / 英・ケンブリッジ大学の研究から~

[スポンサーリンク]

AIの機械学習による創薬が化学業界で注目を集めています。2019年3月に米国サンフランシスコで開催されたMIT Technology Review主催のEmTech Digitalのパネルディスカッションに登壇したInsitro社Daphne Koller氏によると同社はAIの「生成機械学習」アプローチを科学に応用し、創薬の全自動実験装置を完成させたといいます。

化合物自動生成実験装置 Kebotix Platform

生成機械学習とは別名「敵対的生成ネットワーク」(Generative Adversarial Network,以下GAN)と呼ばれています。GANの生成モデルでは「教師無し」でデータから特徴を抽出し学習することで実在しないデータを作ったり、ふたつのデータを組み合わせて中間的な特徴を持つ新しいデータを生成することが可能です。

Insitro社が用いるのは具体的に、ニューラルネットワークの伝統的なオートエンコーダーという手法です。以下の図では右側の女性、左型の女性の写真のエンコードとデコードを繰り返すことで、両方の特徴を合わせ持つ実在しない「新しい」女性の写真を生成することができるのです。

(出所:EmTech Digital)

 

これを応用すると、創薬における新しい化合物生成に活用することができます。同社の化合物自動生成実験装置はKebotix Platformと名付けられ、新薬に活用できる新しい化合物の生成に大きく貢献しています。

(出所:EmTech Digital)

 

「言語学習」の手法を用いて化学式を読み込み反応を予測

AIと一言で言ってもそのアプローチは様々です。AIによる新薬開発の別の例をご紹介しましょう。

2019年9月の発表によればイギリスのケンブリッジ大学はAIの「言語学習」の手法を用いて化学式を読み込み、新薬生成の際の化合物の反応、効能を予測するアルゴリズムを確立したといいます。その手法を用いると90%以上の正確性で複雑な化学反応の予測ができるようになるとのこと。(原文記事はこちらからAI learns chemistry language to predict how to make medicines”)

このアルゴリズムによって、これまで研究結果を実験室のノートにとってきたものをあらゆる化学反応を予測した「マップ」として管理ができるようになりました。現在もケンブリッジ大学の研究者によってパターン学習の強化が続けられています。

このアルゴリズムによる結果を見ることで、新薬開発に最適な化合物の組み合わせのヒントの発見を圧倒的に短い時間で実現することが可能になると期待されています。

「2020年からはバイオ・テクノロジー・エンジニアリングの時代になる」というInsitro社Koller氏の説明のとおりAIがマーケティングや事務効率化、顧客サービスへの活用のみに留まらず、化学分野で当たり前のように使われる時代はもうすぐそこまで来ているのです。

最先端のAIが学習に要する時間

このような科学分野におけるテクノロジーを支えているのはAIアルゴリズムだけではありません。膨大なデータの蓄積、クレンジング、ガバナンスの効いた管理、そして高い計算能力を持ったコンピューティング開発がその成功を下支えしているのです。

Google社やIBM社が産学協同で開発に力を入れている量子コンピュータ(Quantum Computer)のような大掛かりな演算処理システムの開発から、話題の自動運転を支えるメモリSRAM*といったハードウェアプロセッサの高性能化まで、データ処理と演算を効率的に実装できるシステム開発があってこそ化学分野のAI活用が実現するのです。

Open AIによるとこれまでの傾向として、最先端のAIが学習に要する時間は3. 5カ月ごとに倍増しているといいます。結果、過去5年間でその処理能力は約30万倍にも増加しています。

(出所:Open AI, “AI and Computer”)

 

今後、新薬開発におけるでより多くのデータ量、演算が求められても機械学習能力はその必要に追いつくべくさらなる進化を続けることでしょう。化学分野におけるAIの貢献からはますます目が離せません。

*SRAMに関する詳細の情報はRSコンポーネンツ社サイトから

関連書籍

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. コーヒーブレイク
  2. 今度こそ目指せ!フェロモンでリア充生活
  3. 表面酸化した銅ナノ粒子による低温焼結に成功~銀が主流のプリンテッ…
  4. 林 雄二郎博士に聞く ポットエコノミーの化学
  5. ケムステタイムトラベル2010 ~今こそ昔の記事を見てみよう~
  6. エーテルがDiels–Alder反応?トリチルカチオンでin s…
  7. 【書籍】液晶の歴史
  8. 抗ガン天然物インゲノールの超短工程全合成

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ホウ素と窒素固定のおはなし
  2. トリチウム水から完全無害な水素ガスを作り出す?
  3. 製薬各社 2010年度 第1四半期決算を発表
  4. 多成分反応で交互ポリペプチドを合成
  5. 化学でもフェルミ推定
  6. TEMPO酸化 TEMPO Oxidation
  7. プラスマイナスエーテル!?
  8. 齊藤 尚平 Shohei Saito
  9. 交互に配列制御された高分子合成法の開発と機能開拓
  10. 光触媒-ニッケル協働系によるシステイン含有ペプチドのS-アリール化

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年9月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

注目情報

最新記事

第27回ケムステVシンポ『有機光反応の化学』を開催します!

7月に入り、いよいよ日差しが強まって夏本格化という時期になりました。光のエネルギーを肌で感じられます…

国内最大級の研究者向けDeepTech Company Creation Program「BRAVE FRONTIER」 2022年度の受付開始 (7/15 〆切)

Beyond Next Ventures株式会社(本社:東京都中央区、代表取締役社⻑:伊藤毅、以下「…

イミンアニオン型Smiles転位によるオルトヒドロキシフェニルケチミン合成法の開発

第394回のスポットライトリサーチは、東京農工大学 大学院工学府 応用化学専攻 森研究室の神野 峻輝…

マテリアルズ・インフォマティクスで用いられる統計[超入門]-研究者が0から始めるデータの見方・考え方-

開催日:2022/07/06 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

表面酸化した銅ナノ粒子による低温焼結に成功~銀が主流のプリンテッドエレクトロニクスに、銅という選択肢を提示~

第393回のスポットライトリサーチは、北海道大学 大学院工学院 材料科学専攻 マテリアル設計講座 先…

高分子材料におけるマテリアルズ・インフォマティクスの活用とは?

 申込みはこちら■セミナー概要本動画は、20022年5月18日に開催されたセミナー「高分…

元素のふるさと図鑑

2022年も折り返しに差し掛かりました。2022年は皆さんにとってどんな年になり…

Q&A型ウェビナー カーボンニュートラル実現のためのマイクロ波プロセス 〜ケミカルリサイクル・乾燥・濃縮・焼成・剥離〜

<内容>本ウェビナーでは脱炭素化を実現するための手段として、マイクロ波プロセスをご紹介いたします…

カルボン酸、窒素をトスしてアミノ酸へ

カルボン酸誘導体の不斉アミノ化によりキラルα-アミノ酸の合成法が報告された。カルボン酸をヒドロキシル…

海洋シアノバクテリアから超強力な細胞増殖阻害物質を発見!

第 392回のスポットライトリサーチは、慶應義塾大学大学院 理工学研究科 博士後期課…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP