[スポンサーリンク]

化学者のつぶやき

アジドの3つの窒素原子をすべて入れる

[スポンサーリンク]

ホスフィン触媒を用い、アジド化合物とαエノンからβアミノαジアゾカルボニル化合物を合成した。ホスファジド中間体から窒素分子を放出せず、3つの窒素原子すべてをαエノンに導入できる。

ホスフィン(触媒)を用いたアジド変換反応

アジド化合物は有用なビルディングブロックとして頻用される[1]。代表的なアジドの変換法としては化学量論量、もしくは触媒量のホスフィンを用いた反応が数多く知られている。その中でもStaudinger反応に代表されるホスファジド中間体1から窒素が脱離し生じるイミノホスホラン2を利用した反応は精力的に開発されている(1A)2の加水分解によりアミン(Staudinger反応)、カルボン酸誘導体との反応によりアミド(Staudingerライゲーション)、アルデヒドやケトンと反応しイミン(aza-Wittig反応)へと変換可能である。これらはアジドを窒素原子一つからなる官能基へ変換する手法であるが、二窒素をもつ官能基、ジアゾへ誘導する手法も知られる。Rainesらは、活性エステル部位をもつホスフィン反応剤を用いてアジドをジアゾ化合物へ変換することに成功した(1B)[2]。ホスファジド1を経由して、アジドの三窒素原子すべてを化合物へ導入する例としては、Molinaらが報告したイミン部位をもつ芳香族アジドの2Hインダゾール骨格構築法のみである(1C)[3]

今回、復旦大学のZhang教授らは触媒量のホスフィン存在下、フッ素原子を有するαエノン3TMSアジドを作用させることでβアミノαジアゾカルボニル化合物4を合成することに成功した(1D)。キラルホスフィン触媒を用いればエナンチオ選択的な反応もできることを示した。

図1. ホスフィン(触媒)を用いたアジド変換反応 (A) Staudinger反応など、 (B) Rainesらの手法、 (C) Molinaらの手法、 (D) 今回の反応

“Phosphine-Catalyzed Difunctionalization of b-Fluoroalkyl a,b-Enones: A Direct Approach to b-Amino a-Diazo Carbonyl Compounds”

Wang, H.; Zhang, Li.; Tu, Y.; Xiang, R.; Guo, Y.-L.; Zhang, J. Angew. Chem., Int. Ed.2018, 57, 15787

DOI: 10.1002/anie.201810253

論文著者の紹介

研究者:Junliang Zhang

研究者の経歴:

1993-1997 BSc, Tianjin University (Prof. Wenqin Zhang and Prof. Chunbao Li)
1997-2002 PhD, Shanghai Institute of Organic Chemistry (Prof. Shengming Ma)
2002-2003 Research Chemist, Shanghai Institute of Organic Chemistry (Prof. Shengming Ma)
2003-2004 Humboldt Fellow, University of Colongne (Prof. Hans-Günther Schmalz)
2005-2006 Postdoc, The University of Chicago (Prof. Chuan He and Prof. Stephen Kent)
2006-2017.9 Professor and Vice Dean, East China Normal University
2017.10-present Professor, Fudan University

研究内容:共役化合物と小員環を用いた新規反応開発、キラル配位子の開発と応用、重合触媒開発

論文の概要

本手法ではホスフィン触媒としてdppbを用い、TMSN3b位にフルオロアルキル基(Rf)をもつαエノン3を作用させると、βアミノαジアゾカルボニル化合物4が高収率で得られる(2A)。また、dppbのかわりに彼ら独自のキラルホスフィン触媒P1を用いると、高収率かつ高エナンチオ選択的に4を合成することができた。興味深いことにβ位にトリフルオロメチル基を含むβ二置換エノンやb位にフルオロアルキル基をもたないエノン5に本反応条件を適用すると、ジアゾ化合物は得られず、アジド基が1,4-付加した生成物6が生成する(2B)

本反応の推定反応機構を図2Cに示す。まず、アジドの末端窒素原子にホスフィンが求核付加し、ホスファジド中間体7が生成する。その後、βフルオロアルキルαエノン371,4-付加し、エノラート中間体8が生じ、続く分子内求核付加によって中間体9が生成する。9は加水分解(水の由来は不明)によりホスフィンを再生するとともに10を生成する。最後に10は直ちに分子内開裂し[4]4を与える。この反応機構における鍵の一つは、用いているTMSアジドの嵩高さにより、異性体Z-7の生成が抑制され、副反応経路である脱窒素しにくくなっていることである。

図2. (A) 3とTMSN3を用いた-アミノ-ジアゾカルボニル化合物の合成法 (B) 二置換エノン5の1,4-付加反応 (C) 推定機構

以上、ホスファジド中間体の3つの窒素原子すべてをαエノンへと導入し、βアミノαジアゾカルボニル化合物が合成できた。この反応によりさらなるアジド変換法の発展が期待される。

参考文献

  1. (a) Bräse, S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew Chem., Int. Ed. 2005, 44, 5188. DOI: 10.1002/anie.200400657(b) Shin, K.; Kim, H.; Chang, S. Acc. Chem. Res. 2015, 48, 1040. DOI: 10.1021/acs.accounts.5b00020
  2. (a)Myers, E. L.; Raines, R. T. Angew. Chem., Int. Ed. 2009, 48, 2359. DOI:10.1002/anie.200804689(b)Chou, H.-H.; Raines, R. T. J. Am. Chem. Soc.2013, 135, 14936. DOI:10.1021/ja407822b
  3. Molina, P.; Arques, A.; Vinader, M. V. Tetrahedron Lett.1989, 30, 6237. DOI:1016/S0040-4039(01)93353-2
  4. Ouali, M. S.; Vaultier, M.; Carrié, R. Tetrahedron1980, 36, 1821. DOI: 1016/0040-4020(80)80081-0
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. ナイトレン
  2. 有機合成化学協会誌2021年2月号:デオキシプロピオナート構造・…
  3. ナノチューブを簡単にそろえるの巻
  4. 書類選考は3分で決まる!面接に進める人、進めない人
  5. 目指せ抗がん剤!光と転位でインドールの(逆)プレニル化
  6. “マイクロプラスチック”が海をただよう …
  7. 抗薬物中毒活性を有するイボガイン類の生合成
  8. 創薬開発で使用される偏った有機反応

注目情報

ピックアップ記事

  1. 宇宙に輝く「鄒承魯星」、中国の生物化学の先駆者が小惑星の名前に
  2. マイゼンハイマー転位 Meisenheimer Rearrangement
  3. オンライン|次世代医療・診断・分析のためのマイクロ流体デバイス~微量、迅速・簡便、精密制御機能をどう生かすか~
  4. レスベラトロール /resveratrol
  5. ブーゲ-ランベルト-ベールの法則(Bouguer-Lambert-Beer’s law)
  6. 株式会社ジーシーってどんな会社?
  7. N-ヘテロ環状カルベン / N-Heterocyclic Carbene (NHC)
  8. サラダ油はなぜ燃えにくい? -引火点と発火点-
  9. 東大、京大入試の化学を調べてみた(有機編)
  10. Rではじめるケモ・マテリアルズ・インフォマティクスープログラミング・ノックで基礎を完全習得ー

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年1月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP