[スポンサーリンク]

化学者のつぶやき

燃えないカーテン

[スポンサーリンク]

木材、ゴム、繊維、紙に代表されるように簡単に燃えてしまう高分子材料。通常リン化合物や臭素化合物といった難燃剤をコーティングすることで延焼を防ぎます。

しかし、その燃えやすいはずの高分子を使ったナノコーティングで防火性能を引き出してしまった論文をご紹介します(画像は集英社グランドジャンプ・漫画防災研究室より転載)。

日本では平成17年以降、火災出火件数及びそれによる死者数は減少傾向にありますが、毎年2000人近くの方が亡くなっており[1]、科学的な対処法としてこれまで数多くの難燃剤の研究が行われてきました。難燃剤の研究には火災のリスクを減らすことはもちろんのことですが、それに加えて環境や人体に対して無害であることが求められます。特に繊維製品は延焼を起こしやすく、また何度も洗濯されるため、容易に防火機能を付与できなければなりません。?

最近、Texus A&M UniversityのGrunlanらはLayer-by-Layer(LbL)法という超簡単な方法を用いて生地への防火コーティングの作製にチャレンジしました。[2]

LbL法とはプラスに帯電したポリマー溶液とマイナスに帯電したポリマー溶液に交互に基材を浸漬させることでナノオーダーの薄膜を作製する技術です(ポリマー以外にも帯電する物質であれば製膜可能で、他にも水素結合を利用したLbLなども存在します)。

LbLの特徴は膜厚や表面構造をpHや濃度といったパラメータにより制御することができ、容易に均質なナノコーティングを実現できる点です。

 

2.jpgFig. 1 LbL法の模式図[3]

今回の研究で著者らは、カチオンポリマーとしてpoly(allylamine)を、アニオンポリマーとしてpoly(sodium phosphate)を用い、これらで構成されるコーティングの厚さによって防火性能がどのように変化するかを調査しました。

すると、Fig. 2の結果が示すとおり、層数が増えるにつれ防火性能が高くなり、20 BL(bilayer)では完全に鎮火していることがわかります。

3.jpg

Fig. 2 防火試験中の布の様子(BL = bilayer)[2]

しかしながら、著者らはその後の研究により、膜厚が大き過ぎる場合にはかえって燃焼を引き起こしやすいことを示しています(Fig. 3)。[4]

4.jpg

Fig. 3 ChitosanとPhytic acidによるコーティング(pH 4、pH 5、pH 6のときそれぞれ膜厚は約5 nm、20nm、50nm)[4]

防火試験後の表面構造を観察してみると、高い防火性能をもつコーティングでは表面に無数の気泡が生まれており、これが生地への熱伝導を防ぎ、かつ可燃性ガスの発生を抑制していることがわかりました(Fig. 4)。

すなわち、コーティングが厚すぎる場合には、高分子膜自体が燃焼媒体になってしまうため防火性能を発揮できないが、適切な厚さにコントロールされた均質な膜はナノオーダーであっても高い防火性能を有することが示されました。またナノコーティングで繊維一本一本を覆うことができるため、質感を損なわないという点も強調しています。

 

5.jpgFig. 4 ChitosanとPhytic acidによるコーティングの防火試験前後の表面構造[4]

 

ここで紹介した高分子水溶液に白衣(または割烹着)を浸漬させれば、もしものとき(炎上?)にあなたの命を救ってくれるかもしれません。ぜひお試しを!

 

参考文献

[1] 総務省統計局61 火災出火件数・死者数

[2] “Intumescent All-Polymer Multilayer Nanocoating Capable of Extinguishing Flame on Fabric”, Y-C Li et al. Adv. Mater. 2011, 23, 3926-3931. DOI: 10.1002/adma.201101871

[3] Polyelectrolyte multilayers and nano-organized multimaterials

[4] “Intumescent Multilayer Nanocoating, Made with Renewable Polyelectrolytes, for Flame-Retardant Cotton”, G Laufer et al. Biomacromolecules 2012, 13, 2843?2848. DOI: dx.doi.org/10.1021/bm300873b

 

関連リンク

 

関連書籍

tanuki

投稿者の記事一覧

出身は応用物理で大学院から材料化学に移籍した博士課程学生。生物の優れた機能を模倣するバイオミメティクスに魅了され研究中。化学と物理両方の視点から見た記事を執筆したいと思います。以前はヨーロッパで研究していました。ハイパーマテリアルクリエイター目指してます。

関連記事

  1. 人が集まるポスター発表を考える
  2. 光刺激で超分子ポリマーのらせんを反転させる
  3. ノーベル化学賞2011候補者一覧まとめ
  4. ガラス工房にお邪魔してみたー匠の技から試験管制作体験までー
  5. 2017年(第33回)日本国際賞受賞者 講演会
  6. ボロン酸エステル/ヒドラゾンの協働が実現する強固な細胞Click…
  7. ポンコツ博士の海外奮闘録⑪ 〜博士,データをとる〜
  8. 農工大で爆発事故発生―だが毎度のフォローアップは適切か?

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. アリルオキシカルボニル保護基 Alloc Protecting Group
  2. 2007年度ノーベル化学賞を予想!(1)
  3. ファンケルの身近な健康に関する研究開発
  4. アルキンから環状ポリマーをつくる
  5. サイエンス・コミュニケーションをマスターする
  6. 特許の基礎知識(2)「発明」って何?
  7. 有望な若手研究者を発掘ー研究者探索サービス「JDream Expert Finder」
  8. 電子実験ノートSignals Notebookを紹介します③
  9. UCリアクター「UCR-150N」:冷媒いらずで-100℃!
  10. 9,10-Dihydro-9,10-bis(2-carboxyethyl)-N-(4-nitrophenyl)-10,9-(epoxyimino)anthracene-12-carboxamide

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2014年4月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

注目情報

最新記事

最先端バイオエコノミー社会を実現する合成生物学【対面講座】

開講期間2022年12月12日(月)13:00~16:202022年12月13日(火)1…

複雑なモノマー配列を持ったポリエステル系ブロックポリマーをワンステップで合成

第445回のスポットライトリサーチは、北海道大学 大学院工学研究院 応用化学部門 高分子化学研究室(…

河崎 悠也 Yuuya Kawasaki

河崎 悠也 (かわさき ゆうや) は、日本の有機化学者。九州大学先導物質化学研究所 …

研究者1名からでも始められるMIの検討-スモールスタートに取り組む前の3つのステップ-

開催日:2022/12/07  申込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

吉田 優 Suguru Yoshida

 吉田 優(よしだ すぐる)は、日本の化学者。専門は、有機合成化学、ケミカルバイオロジー。2…

小山 靖人 Yasuhito Koyama

小山 靖人(こやま やすひと)は、日本の有機化学者。富山県立大学工学部医薬品工学…

ポンコツ博士の海外奮闘録XIV ~博士,釣りをする~

シリーズ累計20話!!タイトルの○数字がなくなりました。節々の回は出来る限り実験ネタや個人的なグッと…

定型抗精神病薬 「ピモジド」の化学修飾により新規難治性疼痛治療薬として極めて有望な化合物の創製に成功

第444回のスポットライトリサーチは、近畿大学大学院 薬学研究科 薬学専攻 病態薬理学研究室の笠波 …

【好評につきリピート開催】マイクロ波プロセスのスケールアップ〜動画で実証設備を紹介!〜 ケミカルリサイクル、乾燥炉、ペプチド固相合成、エステル交換、凍結乾燥など

<内容>マイクロ波プロセスのスケールアップがどのように実現されるか、実証設備の動画も交えてご紹介…

三井化学、DXによる企業変革の成果を動画で公開

三井化学株式会社は、常務執行役員 CDO 三瓶 雅夫による、三井化学グループ全社でのDX推進の取り組…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP