[スポンサーリンク]

化学者のつぶやき

燃えないカーテン

[スポンサーリンク]

木材、ゴム、繊維、紙に代表されるように簡単に燃えてしまう高分子材料。通常リン化合物や臭素化合物といった難燃剤をコーティングすることで延焼を防ぎます。

しかし、その燃えやすいはずの高分子を使ったナノコーティングで防火性能を引き出してしまった論文をご紹介します(画像は集英社グランドジャンプ・漫画防災研究室より転載)。

日本では平成17年以降、火災出火件数及びそれによる死者数は減少傾向にありますが、毎年2000人近くの方が亡くなっており[1]、科学的な対処法としてこれまで数多くの難燃剤の研究が行われてきました。難燃剤の研究には火災のリスクを減らすことはもちろんのことですが、それに加えて環境や人体に対して無害であることが求められます。特に繊維製品は延焼を起こしやすく、また何度も洗濯されるため、容易に防火機能を付与できなければなりません。?

最近、Texus A&M UniversityのGrunlanらはLayer-by-Layer(LbL)法という超簡単な方法を用いて生地への防火コーティングの作製にチャレンジしました。[2]

LbL法とはプラスに帯電したポリマー溶液とマイナスに帯電したポリマー溶液に交互に基材を浸漬させることでナノオーダーの薄膜を作製する技術です(ポリマー以外にも帯電する物質であれば製膜可能で、他にも水素結合を利用したLbLなども存在します)。

LbLの特徴は膜厚や表面構造をpHや濃度といったパラメータにより制御することができ、容易に均質なナノコーティングを実現できる点です。

 

2.jpgFig. 1 LbL法の模式図[3]

今回の研究で著者らは、カチオンポリマーとしてpoly(allylamine)を、アニオンポリマーとしてpoly(sodium phosphate)を用い、これらで構成されるコーティングの厚さによって防火性能がどのように変化するかを調査しました。

すると、Fig. 2の結果が示すとおり、層数が増えるにつれ防火性能が高くなり、20 BL(bilayer)では完全に鎮火していることがわかります。

3.jpg

Fig. 2 防火試験中の布の様子(BL = bilayer)[2]

しかしながら、著者らはその後の研究により、膜厚が大き過ぎる場合にはかえって燃焼を引き起こしやすいことを示しています(Fig. 3)。[4]

4.jpg

Fig. 3 ChitosanとPhytic acidによるコーティング(pH 4、pH 5、pH 6のときそれぞれ膜厚は約5 nm、20nm、50nm)[4]

防火試験後の表面構造を観察してみると、高い防火性能をもつコーティングでは表面に無数の気泡が生まれており、これが生地への熱伝導を防ぎ、かつ可燃性ガスの発生を抑制していることがわかりました(Fig. 4)。

すなわち、コーティングが厚すぎる場合には、高分子膜自体が燃焼媒体になってしまうため防火性能を発揮できないが、適切な厚さにコントロールされた均質な膜はナノオーダーであっても高い防火性能を有することが示されました。またナノコーティングで繊維一本一本を覆うことができるため、質感を損なわないという点も強調しています。

 

5.jpgFig. 4 ChitosanとPhytic acidによるコーティングの防火試験前後の表面構造[4]

 

ここで紹介した高分子水溶液に白衣(または割烹着)を浸漬させれば、もしものとき(炎上?)にあなたの命を救ってくれるかもしれません。ぜひお試しを!

 

参考文献

[1] 総務省統計局61 火災出火件数・死者数

[2] “Intumescent All-Polymer Multilayer Nanocoating Capable of Extinguishing Flame on Fabric”, Y-C Li et al. Adv. Mater. 2011, 23, 3926-3931. DOI: 10.1002/adma.201101871

[3] Polyelectrolyte multilayers and nano-organized multimaterials

[4] “Intumescent Multilayer Nanocoating, Made with Renewable Polyelectrolytes, for Flame-Retardant Cotton”, G Laufer et al. Biomacromolecules 2012, 13, 2843?2848. DOI: dx.doi.org/10.1021/bm300873b

 

関連リンク

 

関連書籍

tanuki

tanuki

投稿者の記事一覧

出身は応用物理で大学院から材料化学に移籍した博士課程学生。生物の優れた機能を模倣するバイオミメティクスに魅了され研究中。化学と物理両方の視点から見た記事を執筆したいと思います。以前はヨーロッパで研究していました。ハイパーマテリアルクリエイター目指してます。

関連記事

  1. 炭素-炭素結合を組み替えて多環式芳香族化合物を不斉合成する
  2. 科学史上最悪のスキャンダル?! “Climatega…
  3. 地域の光る化学企業たち-2
  4. 米国へ講演旅行にいってきました:Part I
  5. 単結合を極める
  6. キムワイプをつくった会社 ~キンバリー・クラーク社について~
  7. アスピリンから生まれた循環型ビニルポリマー
  8. 元素の和名わかりますか?

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 理化学研究所、植物の「硫黄代謝」を調節する転写因子を発見
  2. 三共、第一製薬が統合へ 売上高9000億円規模
  3. 小さなフッ素をどうつまむのか
  4. アクリルアミド /acrylamide
  5. 第三回ケムステVプレミアレクチャー「夢のある天然物創薬」を開催します!
  6. 2009年10大化学ニュース
  7. 斬新な官能基変換を可能にするパラジウム触媒
  8. エーザイ 抗がん剤「ハラヴェンR」日米欧で承認取得 
  9. ルミノール誘導体を用いるチロシン選択的タンパク質修飾法
  10. ウランガラス

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

NMRデータ処理にもサブスクの波? 新たなNMRデータ処理ソフトウェアが登場

NMRメーカーである日本電子のイギリス法人、JEOL UKが6月、WindowsとmacOSの両方で…

芳香環交換反応を利用したスルフィド合成法の開発: 悪臭問題に解決策

第 326回のスポットライトリサーチは、早稲田大学理工学術院 山口潤一郎研究室 …

ゼナン・バオ Zhenan Bao

ゼナン(Zhenan Bao, 1970年xx月xx日-)は、アメリカの有機材料科学者、カーボンナノ…

文具に凝るといふことを化学者もしてみむとてするなり⑭: 液タブ XP-PEN Artist 13.3 Proの巻

少し前にペンタブレット「XP-PEN Deco01」を紹介しましたが、もう少しお金をかけると液晶ペン…

定番フィルム「ベルビア100」が米国で販売中止。含まれている化学薬品が有害指定に

富士フイルムのリバーサルフィルム「フジクローム ベルビア100」が、米国で販売ストップとなりました。…

話題のAlphaFold2を使ってみた

ここ数日、構造生物学界隈で「AlphaFold2」と呼ばれているタンパク質の構造…

フェリックス・カステラーノ Felix N. Castellano

フェリックス・カステラーノ(Felix N. Castellano、19xx年x月xx日(ニューヨー…

「第22回 理工系学生科学技術論文コンクール」の応募を開始

日刊工業新聞社とモノづくり日本会議は、理工系学生(大学生・修士課程の大学院生、工業高等専門学校生)を…

Chem-Station Twitter

PAGE TOP