[スポンサーリンク]

化学者のつぶやき

燃えないカーテン

[スポンサーリンク]

木材、ゴム、繊維、紙に代表されるように簡単に燃えてしまう高分子材料。通常リン化合物や臭素化合物といった難燃剤をコーティングすることで延焼を防ぎます。

しかし、その燃えやすいはずの高分子を使ったナノコーティングで防火性能を引き出してしまった論文をご紹介します(画像は集英社グランドジャンプ・漫画防災研究室より転載)。

日本では平成17年以降、火災出火件数及びそれによる死者数は減少傾向にありますが、毎年2000人近くの方が亡くなっており[1]、科学的な対処法としてこれまで数多くの難燃剤の研究が行われてきました。難燃剤の研究には火災のリスクを減らすことはもちろんのことですが、それに加えて環境や人体に対して無害であることが求められます。特に繊維製品は延焼を起こしやすく、また何度も洗濯されるため、容易に防火機能を付与できなければなりません。?

最近、Texus A&M UniversityのGrunlanらはLayer-by-Layer(LbL)法という超簡単な方法を用いて生地への防火コーティングの作製にチャレンジしました。[2]

LbL法とはプラスに帯電したポリマー溶液とマイナスに帯電したポリマー溶液に交互に基材を浸漬させることでナノオーダーの薄膜を作製する技術です(ポリマー以外にも帯電する物質であれば製膜可能で、他にも水素結合を利用したLbLなども存在します)。

LbLの特徴は膜厚や表面構造をpHや濃度といったパラメータにより制御することができ、容易に均質なナノコーティングを実現できる点です。

 

2.jpgFig. 1 LbL法の模式図[3]

今回の研究で著者らは、カチオンポリマーとしてpoly(allylamine)を、アニオンポリマーとしてpoly(sodium phosphate)を用い、これらで構成されるコーティングの厚さによって防火性能がどのように変化するかを調査しました。

すると、Fig. 2の結果が示すとおり、層数が増えるにつれ防火性能が高くなり、20 BL(bilayer)では完全に鎮火していることがわかります。

3.jpg

Fig. 2 防火試験中の布の様子(BL = bilayer)[2]

しかしながら、著者らはその後の研究により、膜厚が大き過ぎる場合にはかえって燃焼を引き起こしやすいことを示しています(Fig. 3)。[4]

4.jpg

Fig. 3 ChitosanとPhytic acidによるコーティング(pH 4、pH 5、pH 6のときそれぞれ膜厚は約5 nm、20nm、50nm)[4]

防火試験後の表面構造を観察してみると、高い防火性能をもつコーティングでは表面に無数の気泡が生まれており、これが生地への熱伝導を防ぎ、かつ可燃性ガスの発生を抑制していることがわかりました(Fig. 4)。

すなわち、コーティングが厚すぎる場合には、高分子膜自体が燃焼媒体になってしまうため防火性能を発揮できないが、適切な厚さにコントロールされた均質な膜はナノオーダーであっても高い防火性能を有することが示されました。またナノコーティングで繊維一本一本を覆うことができるため、質感を損なわないという点も強調しています。

 

5.jpgFig. 4 ChitosanとPhytic acidによるコーティングの防火試験前後の表面構造[4]

 

ここで紹介した高分子水溶液に白衣(または割烹着)を浸漬させれば、もしものとき(炎上?)にあなたの命を救ってくれるかもしれません。ぜひお試しを!

 

参考文献

[1] 総務省統計局61 火災出火件数・死者数

[2] “Intumescent All-Polymer Multilayer Nanocoating Capable of Extinguishing Flame on Fabric”, Y-C Li et al. Adv. Mater. 2011, 23, 3926-3931. DOI: 10.1002/adma.201101871

[3] Polyelectrolyte multilayers and nano-organized multimaterials

[4] “Intumescent Multilayer Nanocoating, Made with Renewable Polyelectrolytes, for Flame-Retardant Cotton”, G Laufer et al. Biomacromolecules 2012, 13, 2843?2848. DOI: dx.doi.org/10.1021/bm300873b

 

関連リンク

 

関連書籍

[amazonjs asin=”4781302319″ locale=”JP” title=”難燃剤・難燃材料の活用技術 (CMCテクニカルライブラリー―ファインケミカルシリーズ)”][amazonjs asin=”4769341733″ locale=”JP” title=”これでわかる難燃化技術”]
Avatar photo

tanuki

投稿者の記事一覧

出身は応用物理で大学院から材料化学に移籍した博士課程学生。生物の優れた機能を模倣するバイオミメティクスに魅了され研究中。化学と物理両方の視点から見た記事を執筆したいと思います。以前はヨーロッパで研究していました。ハイパーマテリアルクリエイター目指してます。

関連記事

  1. 人と人との「結合」を「活性化」する
  2. 「優れた研究テーマ」はどう選ぶべき?
  3. 日本初の化学専用オープンコミュニティ、ケムステSlack始動!
  4. 多価飽和脂肪酸の固相合成と抗炎症性脂肪酸の発見—ペプチドのように…
  5. オートファジー特異的阻害剤としての新規Atg4B阻害剤の開発
  6. ケムステ版・ノーベル化学賞候補者リスト【2021年版】
  7. 学会会場でiPadを活用する①~手書きの講演ノートを取ろう!~
  8. ヤモリの足のはなし ~吸盤ではない~

注目情報

ピックアップ記事

  1. がん代謝物との環化付加反応によるがん化学療法
  2. 原野 幸治 Koji Harano
  3. 2014年ケムステ記事ランキング
  4. 「遠隔位のC-H結合を触媒的に酸化する」―イリノイ大学アーバナ・シャンペーン校・M.C.White研より
  5. コーンブルム酸化 Kornblum Oxidation
  6. 極小の「分子ペンチ」開発
  7. 今年も出ます!!サイエンスアゴラ2015
  8. なぜあの研究室の成果は一流誌ばかりに掲載されるのか【考察】
  9. 世界初 もみ殻からLEDを開発!~オレンジ色に発光するシリコン量子ドットLED~
  10. ジェイ・キースリング Jay Keasling

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2014年4月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

最新記事

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

四国化成ってどんな会社?

私たち四国化成ホールディングス株式会社は、企業理念「独創力」を掲げ、「有機合成技術」…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP