[スポンサーリンク]

化学者のつぶやき

“click”の先に

PTA-3.jpg

(図は下記論文より引用)

クリックケミストリーは、K. B. Shaeplessが提唱した、簡便に2つのパーツ同士をつなぎあわせる反応です[1]。特に、アルキンとアジドからトリアゾールが生じるHuisgen反応は、クリックケミストリーの代表的な反応とされています。高効率・精製が容易・副生成物が生じない、などの理由から有機合成から生物化学まで幅広い分野で利用されているのは、ご存じの通りです。

 

今回は、Huisgen反応を用いた重合の結果生じるトリアゾールを足場としてさらなるカップリング反応を行うことにより、高分子主鎖中に様々な官能基を導入している論文をご紹介します。

 

Schwartz, E.; Breitenkamp, K.; Fokin, V. V.* Macromolecules, 2011, 44, 4735–4741.

DOI: 10.1021/ma2005469

高分子化学の分野においても、クリックケミストリーは活用されています。高分子中に数十・数百か所存在する反応点で効率よく反応を進行させたり、逆に数百・数千・場合によっては数万原子からなる高分子中で1つしかない反応点で反応を進行させたりできるために、非常に有用なカップリング反応として利用されています。

 

今回の報告では、Fokinらはまず、アルキンにヨウ素を導入したモノマー(下図)を合成し、一価の銅を触媒として用いる一般的なHuisgen反応の条件で重合反応を行っています。逐次重合ですが、1時間で数平均分子量1万以上のポリマーが得られています(しかし、ヨウ素を有するモノマーは、水素を有するモノマーよりも反応性が低いようです)。得られたポリマーは、主鎖中に多数のヨードトリアゾール(5-iodo-1,2,3-triazole)、つまりアリールハライドを有するため、鈴木カップリングおよびHeck反応を行うことが可能となります。

 

PTA-1.jpg

 
そこで、パラジウム触媒とフェニルボロン酸を用いた鈴木カップリングによりフェニル基の導入を行ったところ、約94%もの反応の進行が確認されました(6%は副反応により、ヨウ素が水素に置換された)。続いて、アクリロニトリルまたはメチルエチルケトンとパラジウム触媒を用いたHeck反応により、シアノ基・アセチル基の定量的な導入がそれぞれ行われています。ただし、スチレンを用いたHeck反応では、ポリマーの溶解性が低いためか、60%程度しか反応が進行しませんでした。
 
PTA-2.jpg
 
 
先述のように、高分子上で反応を定量的に進行させるためには工夫を要することが多々あります。そのため、今回の手法ではSuzukiカップリングやHeck反応といった一般的手法で定量的な反応を行える点が魅力的です。また、ポリトリアゾールの溶解性の悪さから、定量的に反応を進行させるためには用いる試薬を選ぶ必要があったようですが、高分子合成でHuisgen反応が用いられている場面としては重合よりもブロックコポリマー合成や官能基の導入など、主鎖/側鎖の修飾のために用いられることが多いため、溶解性を気にせずこのようなpost-functionalization法が活用できるのではないかと思います。問題点としては、ヨウ素化アセチレンを合成しなくてはならないことと、クリック反応がどれだけの適用性を持っているか、といったところが挙げられるでしょうか。
 
これまで、シクロオクチン-アジド[2]、チオール-エン[3]などの効率的なクリック反応だけでなく、post-functionalizationを指向したニトリルオキシドを用いたクリック反応[4]も開発されてきました。最近では、この論文を報告したFokinらによるトリアゾールを利用したC-H結合への挿入反応[5]も報告されており、"click"の先にはまだまだ大きな可能性が秘められているようです。
 
[1] Angew. Chem., Int. Ed. 2001, 40, 2004–2021. DOI: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
[2] Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 16793-16797. DOI: 10.1073/pnas.0707090104
[3] Chem. Soc. Rev. 2010, 39, 1355-1387.  DOI: 10.1039/B901979K
[4] Macromolecules 2009, 42, 7709-7717. DOI: 10.1021/ma9014577
[5] J. Am. Chem. Soc. 2011, 133, 10352-10355. DOI: 10.1021/ja202969z
The following two tabs change content below.
suiga
高分子合成と高分子合成の話題を中心にご紹介します。基礎研究・応用研究・商品開発それぞれの面白さをお伝えしていきたいです。

関連記事

  1. アメリカで Ph.D. を取る –奨学金を申請するの巻–
  2. Dead Endを回避せよ!「全合成・極限からの一手」⑥
  3. メリークリスマス☆
  4. YMC-DispoPackAT 「ケムステを見た!!」 30%O…
  5. センター試験を解いてみた
  6. ChemTile GameとSpectral Game
  7. YMC「水素吸蔵合金キャニスター」:水素を安全・効率的に所有!
  8. アレクセイ・チチバビン ~もうひとりのロシア有機化学の父~

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 核酸塩基は4つだけではない
  2. 280億円賠償評決 米メルク社治療薬副作用で死亡 テキサス州
  3. ベンゼンの害、低濃度でも 血液細胞に損傷
  4. ネッド・シーマン Nadrian C. Seeman
  5. リンと窒素だけから成る芳香環
  6. ゴジラ級のエルニーニョに…出会った!
  7. 今年も出ます!サイエンスアゴラ2014
  8. 金よりも価値のある化学者の貢献
  9. トリプトファン選択的タンパク質修飾反応 Trp-Selective Protein Modification
  10. ケムステ10年回顧録― 副代表版

関連商品

注目情報

注目情報

最新記事

カーボンナノベルト合成初成功の舞台裏 (1)

今年もあともう少しですね。私は中国の大学院で研究を行っている日本人です。このChem-Sta…

有機合成化学の豆知識botを作ってみた

皆さんこんにちは。めっきり実験から退き、教育係+マネジメント係になってしまったcosineです。…

デニス・ドーハティ Dennis A. Dougherty

デニス・A・ドーハティ(Dennis A. Dougherty、1952年12月4日-)は、米国の物…

ベンゼンの直接アルキル化

ベンゼンにアルキル基を導入したいとき、皆さんはどのような手法を用いますか? (さらに&hel…

アメリカ大学院留学:TAの仕事

私がこれまでの留学生活で経験した一番の挫折は、ティーチングアシスタント(TA)です。慣れない英語で大…

2017年の注目分子はどれ?

今年も残りあとわずかとなり、毎年おなじみのアメリカ化学会(ACS)によるMolecules of t…

Chem-Station Twitter

PAGE TOP