[スポンサーリンク]

化学者のつぶやき

“click”の先に

PTA-3.jpg

(図は下記論文より引用)

クリックケミストリーは、K. B. Shaeplessが提唱した、簡便に2つのパーツ同士をつなぎあわせる反応です[1]。特に、アルキンとアジドからトリアゾールが生じるHuisgen反応は、クリックケミストリーの代表的な反応とされています。高効率・精製が容易・副生成物が生じない、などの理由から有機合成から生物化学まで幅広い分野で利用されているのは、ご存じの通りです。

 

今回は、Huisgen反応を用いた重合の結果生じるトリアゾールを足場としてさらなるカップリング反応を行うことにより、高分子主鎖中に様々な官能基を導入している論文をご紹介します。

 

Schwartz, E.; Breitenkamp, K.; Fokin, V. V.* Macromolecules, 2011, 44, 4735–4741.

DOI: 10.1021/ma2005469

高分子化学の分野においても、クリックケミストリーは活用されています。高分子中に数十・数百か所存在する反応点で効率よく反応を進行させたり、逆に数百・数千・場合によっては数万原子からなる高分子中で1つしかない反応点で反応を進行させたりできるために、非常に有用なカップリング反応として利用されています。

 

今回の報告では、Fokinらはまず、アルキンにヨウ素を導入したモノマー(下図)を合成し、一価の銅を触媒として用いる一般的なHuisgen反応の条件で重合反応を行っています。逐次重合ですが、1時間で数平均分子量1万以上のポリマーが得られています(しかし、ヨウ素を有するモノマーは、水素を有するモノマーよりも反応性が低いようです)。得られたポリマーは、主鎖中に多数のヨードトリアゾール(5-iodo-1,2,3-triazole)、つまりアリールハライドを有するため、鈴木カップリングおよびHeck反応を行うことが可能となります。

 

PTA-1.jpg

 
そこで、パラジウム触媒とフェニルボロン酸を用いた鈴木カップリングによりフェニル基の導入を行ったところ、約94%もの反応の進行が確認されました(6%は副反応により、ヨウ素が水素に置換された)。続いて、アクリロニトリルまたはメチルエチルケトンとパラジウム触媒を用いたHeck反応により、シアノ基・アセチル基の定量的な導入がそれぞれ行われています。ただし、スチレンを用いたHeck反応では、ポリマーの溶解性が低いためか、60%程度しか反応が進行しませんでした。
 
PTA-2.jpg
 
 
先述のように、高分子上で反応を定量的に進行させるためには工夫を要することが多々あります。そのため、今回の手法ではSuzukiカップリングやHeck反応といった一般的手法で定量的な反応を行える点が魅力的です。また、ポリトリアゾールの溶解性の悪さから、定量的に反応を進行させるためには用いる試薬を選ぶ必要があったようですが、高分子合成でHuisgen反応が用いられている場面としては重合よりもブロックコポリマー合成や官能基の導入など、主鎖/側鎖の修飾のために用いられることが多いため、溶解性を気にせずこのようなpost-functionalization法が活用できるのではないかと思います。問題点としては、ヨウ素化アセチレンを合成しなくてはならないことと、クリック反応がどれだけの適用性を持っているか、といったところが挙げられるでしょうか。
 
これまで、シクロオクチン-アジド[2]、チオール-エン[3]などの効率的なクリック反応だけでなく、post-functionalizationを指向したニトリルオキシドを用いたクリック反応[4]も開発されてきました。最近では、この論文を報告したFokinらによるトリアゾールを利用したC-H結合への挿入反応[5]も報告されており、"click"の先にはまだまだ大きな可能性が秘められているようです。
 
[1] Angew. Chem., Int. Ed. 2001, 40, 2004–2021. DOI: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
[2] Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 16793-16797. DOI: 10.1073/pnas.0707090104
[3] Chem. Soc. Rev. 2010, 39, 1355-1387.  DOI: 10.1039/B901979K
[4] Macromolecules 2009, 42, 7709-7717. DOI: 10.1021/ma9014577
[5] J. Am. Chem. Soc. 2011, 133, 10352-10355. DOI: 10.1021/ja202969z
The following two tabs change content below.
suiga
高分子合成と高分子合成の話題を中心にご紹介します。基礎研究・応用研究・商品開発それぞれの面白さをお伝えしていきたいです。

関連記事

  1. マンガン触媒による飽和炭化水素の直接アジド化
  2. 高機能な導電性ポリマーの精密合成法の開発
  3. C70の中に水分子を閉じ込める
  4. 地球温暖化が食物連鎖に影響 – 生態化学量論の視点か…
  5. とあるカレイラの天然物〜Pallambins〜
  6. 「溶融炭酸塩基の脱プロトン化で有用物質をつくる」スタンフォード大…
  7. シリリウムカルボラン触媒を用いる脱フッ素水素化
  8. 個性あふれるTOC大集合!

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. トヨタ、世界初「省ネオジム耐熱磁石」開発
  2. デュボア アミノ化反応 Du Bois Amination
  3. PACIFICHEM2010に参加してきました!④
  4. YMC研究奨励金当選者の声
  5. ミズロウ・エヴァンス転位 Mislow-Evans Rearrangement
  6. 化学研究ライフハック:縦置きマルチディスプレイに挑戦!
  7. 有機アジド(1):歴史と基本的な性質
  8. イトムカ鉱山
  9. サレット・コリンズ酸化 Sarett-Collins Oxidation
  10. トーマス・トーレス Tomas Torres

関連商品

注目情報

注目情報

最新記事

ボロン酸エステル/ヒドラゾンの協働が実現する強固な細胞Click反応

2017年、アルバータ大学・Dennis G. Hallらは、細胞毒性の低いボロン酸とジオール間での…

分子で作る惑星、その名もナノサターン!

2018年、東工大の豊田真司先生らによって、まるで土星を型どったような分子の合成が報告された。フラー…

磯部 寛之 Hiroyuki Isobe

磯部寛之(いそべひろゆき、1970年11月9日–東京都生まれ)は日本の有機化学者である。東京大学理学…

死海付近で臭素が漏洩

イスラエル警察は死海付近の向上から臭素が漏れだしたことを明らかにし、付近住民に自宅にとどまるよう呼び…

光触媒反応用途の青色LED光源を比較してみた

巷で大流行の可視光レドックス触媒反応ですが、筆者のラボでも活用するようになりました。しかし経…

宮沢賢治の元素図鑑

概要本書は宮沢賢治の作品に登場する元素を取り上げ、作品を入り口として各元素について解説した書…

Chem-Station Twitter

PAGE TOP