[スポンサーリンク]

化学者のつぶやき

“click”の先に

[スポンサーリンク]

PTA-3.jpg

(図は下記論文より引用)

クリックケミストリーは、K. B. Shaeplessが提唱した、簡便に2つのパーツ同士をつなぎあわせる反応です[1]。特に、アルキンとアジドからトリアゾールが生じるHuisgen反応は、クリックケミストリーの代表的な反応とされています。高効率・精製が容易・副生成物が生じない、などの理由から有機合成から生物化学まで幅広い分野で利用されているのは、ご存じの通りです。

 

今回は、Huisgen反応を用いた重合の結果生じるトリアゾールを足場としてさらなるカップリング反応を行うことにより、高分子主鎖中に様々な官能基を導入している論文をご紹介します。

 

Schwartz, E.; Breitenkamp, K.; Fokin, V. V.* Macromolecules, 2011, 44, 4735–4741.

DOI: 10.1021/ma2005469

高分子化学の分野においても、クリックケミストリーは活用されています。高分子中に数十・数百か所存在する反応点で効率よく反応を進行させたり、逆に数百・数千・場合によっては数万原子からなる高分子中で1つしかない反応点で反応を進行させたりできるために、非常に有用なカップリング反応として利用されています。

 

今回の報告では、Fokinらはまず、アルキンにヨウ素を導入したモノマー(下図)を合成し、一価の銅を触媒として用いる一般的なHuisgen反応の条件で重合反応を行っています。逐次重合ですが、1時間で数平均分子量1万以上のポリマーが得られています(しかし、ヨウ素を有するモノマーは、水素を有するモノマーよりも反応性が低いようです)。得られたポリマーは、主鎖中に多数のヨードトリアゾール(5-iodo-1,2,3-triazole)、つまりアリールハライドを有するため、鈴木カップリングおよびHeck反応を行うことが可能となります。

 

PTA-1.jpg

 
そこで、パラジウム触媒とフェニルボロン酸を用いた鈴木カップリングによりフェニル基の導入を行ったところ、約94%もの反応の進行が確認されました(6%は副反応により、ヨウ素が水素に置換された)。続いて、アクリロニトリルまたはメチルエチルケトンとパラジウム触媒を用いたHeck反応により、シアノ基・アセチル基の定量的な導入がそれぞれ行われています。ただし、スチレンを用いたHeck反応では、ポリマーの溶解性が低いためか、60%程度しか反応が進行しませんでした。
 
PTA-2.jpg
 
 
先述のように、高分子上で反応を定量的に進行させるためには工夫を要することが多々あります。そのため、今回の手法ではSuzukiカップリングやHeck反応といった一般的手法で定量的な反応を行える点が魅力的です。また、ポリトリアゾールの溶解性の悪さから、定量的に反応を進行させるためには用いる試薬を選ぶ必要があったようですが、高分子合成でHuisgen反応が用いられている場面としては重合よりもブロックコポリマー合成や官能基の導入など、主鎖/側鎖の修飾のために用いられることが多いため、溶解性を気にせずこのようなpost-functionalization法が活用できるのではないかと思います。問題点としては、ヨウ素化アセチレンを合成しなくてはならないことと、クリック反応がどれだけの適用性を持っているか、といったところが挙げられるでしょうか。
 
これまで、シクロオクチン-アジド[2]、チオール-エン[3]などの効率的なクリック反応だけでなく、post-functionalizationを指向したニトリルオキシドを用いたクリック反応[4]も開発されてきました。最近では、この論文を報告したFokinらによるトリアゾールを利用したC-H結合への挿入反応[5]も報告されており、"click"の先にはまだまだ大きな可能性が秘められているようです。
 
[1] Angew. Chem., Int. Ed. 2001, 40, 2004–2021. DOI: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
[2] Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 16793-16797. DOI: 10.1073/pnas.0707090104
[3] Chem. Soc. Rev. 2010, 39, 1355-1387.  DOI: 10.1039/B901979K
[4] Macromolecules 2009, 42, 7709-7717. DOI: 10.1021/ma9014577
[5] J. Am. Chem. Soc. 2011, 133, 10352-10355. DOI: 10.1021/ja202969z
Avatar photo

suiga

投稿者の記事一覧

高分子合成と高分子合成の話題を中心にご紹介します。基礎研究・応用研究・商品開発それぞれの面白さをお伝えしていきたいです。

関連記事

  1. 10手で陥落!(+)-pepluanol Aの全合成
  2. 活性酸素種はどれでしょう? 〜三重項酸素と一重項酸素、そのほか〜…
  3. 今冬注目の有機化学書籍3本!
  4. 高分子と高分子の反応も冷やして加速する
  5. デルゴシチニブ(Delgocitinib)のはなし 日本発の非ス…
  6. 世界の技術進歩を支える四国化成の「独創力」
  7. 光で2-AGの量を制御する
  8. シンガポールへ行ってきた:NTUとNUS化学科訪問

注目情報

ピックアップ記事

  1. 研究のプロフェッショナルに囲まれて仕事をしたい 大学助教の願いを実現した「ビジョンマッチング」
  2. 触媒の貴金属低減化、劣化対策の技術動向【終了】
  3. 第七回ケムステVシンポジウム「有機合成化学の若い力」を開催します!
  4. クロスカップリング反応関連書籍
  5. ベンジル保護基 Benzyl (Bn) Protective Group
  6. 4歳・2歳と学会・領域会議に参加してみた ①
  7. 炭素を1つスズに置き換えてみたらどうなる?
  8. アブシジン酸(abscisic acid; ABA)
  9. 絶対に面白い化学入門 世界史は化学でできている
  10. 2009年1月人気化学書籍ランキング

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2011年7月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP