[スポンサーリンク]

化学者のつぶやき

“click”の先に

[スポンサーリンク]

PTA-3.jpg

(図は下記論文より引用)

クリックケミストリーは、K. B. Shaeplessが提唱した、簡便に2つのパーツ同士をつなぎあわせる反応です[1]。特に、アルキンとアジドからトリアゾールが生じるHuisgen反応は、クリックケミストリーの代表的な反応とされています。高効率・精製が容易・副生成物が生じない、などの理由から有機合成から生物化学まで幅広い分野で利用されているのは、ご存じの通りです。

 

今回は、Huisgen反応を用いた重合の結果生じるトリアゾールを足場としてさらなるカップリング反応を行うことにより、高分子主鎖中に様々な官能基を導入している論文をご紹介します。

 

Schwartz, E.; Breitenkamp, K.; Fokin, V. V.* Macromolecules, 2011, 44, 4735–4741.

DOI: 10.1021/ma2005469

高分子化学の分野においても、クリックケミストリーは活用されています。高分子中に数十・数百か所存在する反応点で効率よく反応を進行させたり、逆に数百・数千・場合によっては数万原子からなる高分子中で1つしかない反応点で反応を進行させたりできるために、非常に有用なカップリング反応として利用されています。

 

今回の報告では、Fokinらはまず、アルキンにヨウ素を導入したモノマー(下図)を合成し、一価の銅を触媒として用いる一般的なHuisgen反応の条件で重合反応を行っています。逐次重合ですが、1時間で数平均分子量1万以上のポリマーが得られています(しかし、ヨウ素を有するモノマーは、水素を有するモノマーよりも反応性が低いようです)。得られたポリマーは、主鎖中に多数のヨードトリアゾール(5-iodo-1,2,3-triazole)、つまりアリールハライドを有するため、鈴木カップリングおよびHeck反応を行うことが可能となります。

 

PTA-1.jpg

 
そこで、パラジウム触媒とフェニルボロン酸を用いた鈴木カップリングによりフェニル基の導入を行ったところ、約94%もの反応の進行が確認されました(6%は副反応により、ヨウ素が水素に置換された)。続いて、アクリロニトリルまたはメチルエチルケトンとパラジウム触媒を用いたHeck反応により、シアノ基・アセチル基の定量的な導入がそれぞれ行われています。ただし、スチレンを用いたHeck反応では、ポリマーの溶解性が低いためか、60%程度しか反応が進行しませんでした。
 
PTA-2.jpg
 
 
先述のように、高分子上で反応を定量的に進行させるためには工夫を要することが多々あります。そのため、今回の手法ではSuzukiカップリングやHeck反応といった一般的手法で定量的な反応を行える点が魅力的です。また、ポリトリアゾールの溶解性の悪さから、定量的に反応を進行させるためには用いる試薬を選ぶ必要があったようですが、高分子合成でHuisgen反応が用いられている場面としては重合よりもブロックコポリマー合成や官能基の導入など、主鎖/側鎖の修飾のために用いられることが多いため、溶解性を気にせずこのようなpost-functionalization法が活用できるのではないかと思います。問題点としては、ヨウ素化アセチレンを合成しなくてはならないことと、クリック反応がどれだけの適用性を持っているか、といったところが挙げられるでしょうか。
 
これまで、シクロオクチン-アジド[2]、チオール-エン[3]などの効率的なクリック反応だけでなく、post-functionalizationを指向したニトリルオキシドを用いたクリック反応[4]も開発されてきました。最近では、この論文を報告したFokinらによるトリアゾールを利用したC-H結合への挿入反応[5]も報告されており、"click"の先にはまだまだ大きな可能性が秘められているようです。
 
[1] Angew. Chem., Int. Ed. 2001, 40, 2004–2021. DOI: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
[2] Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 16793-16797. DOI: 10.1073/pnas.0707090104
[3] Chem. Soc. Rev. 2010, 39, 1355-1387.  DOI: 10.1039/B901979K
[4] Macromolecules 2009, 42, 7709-7717. DOI: 10.1021/ma9014577
[5] J. Am. Chem. Soc. 2011, 133, 10352-10355. DOI: 10.1021/ja202969z
Avatar photo

suiga

投稿者の記事一覧

高分子合成と高分子合成の話題を中心にご紹介します。基礎研究・応用研究・商品開発それぞれの面白さをお伝えしていきたいです。

関連記事

  1. 太陽電池を1から作ろう:色素増感太陽電池 実験キット
  2. 第18回日本化学連合シンポジウム「社会実装を実現する化学人材創出…
  3. マイクロ波による事業創出やケミカルリサイクルについて/マイクロ波…
  4. ゼロから学ぶ機械学習【化学徒の機械学習】
  5. 医薬品有効成分の新しい結晶化経路を発見!
  6. もし炭素原子の手が6本あったら
  7. 世界最高の耐久性を示すプロパン脱水素触媒
  8. 光触媒の力で多置換トリフルオロメチルアルケンを合成

注目情報

ピックアップ記事

  1. 工程フローからみた「どんな会社が?」~タイヤ編 その2
  2. スルホニルアミノ酸を含むペプチドフォルダマーの創製
  3. スルホニルフルオリド
  4. カルボン酸からハロゲン化合物を不斉合成する
  5. 三菱化学グループも石化製品を値上げ、原油高で価格転嫁
  6. 毛染めでのアレルギー大幅低減へ ~日華化学がヘアカラー用染料開発~
  7. 環状ペプチドの効率的な化学-酵素ハイブリッド合成法の開発
  8. PCET×三重項触媒により、不活性なカルボン酸の光誘起脱炭酸反応を促進
  9. アンモニアを窒素へ変換する触媒
  10. エナンチオ選択的ジフルオロアルキルブロミド合成

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2011年7月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

四国化成ってどんな会社?

私たち四国化成ホールディングス株式会社は、企業理念「独創力」を掲げ、「有機合成技術」…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP