[スポンサーリンク]

スポットライトリサーチ

原子一個の電気陰性度を測った! ―化学結合の本質に迫る―

[スポンサーリンク]

第104回のスポットライトリサーチ。今回は、東京大学大学院新領域創成科学研究科の小野田 穣特任研究員(当時)にお願いしました。

小野田さんが所属した杉本宜昭研究室では、鋭い探針を持つ走査型プローブ顕微鏡を用いることによって、物質表面をイメージングし、単原子レベルでの物性測定・単原子操作などのナノテクノロジーの新技術が研究されています。

つい最近、杉本研究室は、原子間力顕微鏡を用いることによって単原子の電気陰性度の測定に成功しました。

本成果はNature Communications誌に報告されており、プレスリリースとしても取り上げられました。小野田さんはこの成果を以って、ICSPM24 Poster Award応用物理学会 2017年春季 薄膜・表面 講演奨励賞日本表面科学会 講演奨励賞と、数々の賞を受賞されています!現在、小野田さんはカナダのアルバータ大学で研究員としてお勤めになられており、今後のますますのご活躍が期待されます。

Electronegativity determination of individual surface atoms by atomic force microscopy

J. Onoda, M. Ondráček, P. Jelínek, Y. Sugimoto

Nature Communications 2017, 8, 15155. DOI: 10.1038/ncomms15155

筆頭著者の小野田さんについて、杉本先生からコメントをいただいています。

小野田さんは電界イオン顕微鏡の研究で博士を取得しています。この装置を用いて、針先端を原子レベルで尖らせたり、制御したりする研究を行っていました。今回の電気陰性度の研究では、彼の針先端への想像力が十二分に活かされたと思います。化学結合エネルギーの測定は大変難しいのですが、持ち前の器用さで、他の追随を許さない精密な実験データの取得に成功しました。次の舞台のカナダでも、世界一級の研究成果をあげると期待しています。

それでは、研究成果をご覧ください!

Q1. 今回の受賞対象となったのはどんな研究ですか?簡単にご説明ください。

二つの原子が化学結合を形成する際、大まかには「共有結合」、「極性共有結合」、「イオン結合」に分類されます。極性の度合いは二原子間の「電気陰性度差」によって決まります。電気陰性度は1932年にポーリングが初めて具体的な式を示しましたが、これまでは主にガスの反応熱のデータを基にして求められてきました[1]。

本研究では、原子間力顕微鏡(AFM)を用いて一つひとつの原子の上で化学結合エネルギーを測定することによって、単原子の電気陰性度を評価することに成功しました(図1)。単一の原子の状態で各元素の電気陰性度を評価したのは世界初の成果となります。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

2007年、我々の研究室から「AFMによる単原子の元素識別」という大きな研究成果が報告されました[2]。しかし、この手法はそのままではSiやSnなどのIV族元素にしか適用できませんでした。そこで私は2012年から、OやNなど様々な元素にも適用可能となるように元素識別法の拡張を始めました。Paulingの極性共有結合の式[1]を用いて実験データを検証した結果、より普遍的な元素識別法を見出すことができました。しかし、成果はそれだけではなく、本手法によって各元素の電気陰性度も測定できることを発見しました(図2左)。AFMによって化学の基本的な量である電気陰性度を決定できることが分かったことは大変感動的でした。これにより、例え同一の元素であっても異なる化学環境下に置かれた場合、電気陰性度は変化することも実証できました(図2右)。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

本研究の肝は、異なる化学活性度を持ち、かつ、ほぼ同様の電気陰性度を有する探針を多数準備したことです。これらを用いてターゲット原子上の化学結合エネルギーを系統的に測定することによって、電気陰性度を決定することができました。しかし、このために表面に探針先端をわずかにぶつけて、針先の原子の化学状態を変化させるという、非常に緻密、かつ、時間の要する作業が必要でした。今回はAFMオペレーターである私の努力と忍耐で克服できましたが(笑)、本手法の効率をより高めるためには電場などの扱いやすい外場によって探針先端の化学活性度を連続的に変化させるなどの工夫が必要です。今後、測定技術が向上し、TiO2などの機能的な酸化物表面においても電気陰性度評価が可能となることを期待しています。

Q4. 将来は化学とどう関わっていきたいですか?

今回の研究を通して、原子分解能AFMという最先端ツールを用いることで、新たな側面から化学の基本概念に迫られることが分かりました。本研究では、主にラジカル同士で形成される(極性)共有結合を取り扱いましたが、他にも興味ある結合としては空軌道と非共有電子対による「配位結合」などがあります。また、f軌道を持つ重い元素同士を結合させて様々な「多重結合」を単原子レベルで検証することも考えられます。将来的には、新たな分析手法や実験装置を開発してこのような化学の基本概念を別角度から検証すると共に、従来技術では達成し得なかった化学のフロンティアにも挑戦していければと思います。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

「科学者という仕事」という本の帯に次の言葉が載っており惹かれました[3]。

「次の質問に答えよ。

問題1 何かおもしろい問題を考えよ。

問題2 問題1で作った問題に答えよ。

これが解ければ、あなたも研究者」

問題1では本人の背景知識やセンス、研究への姿勢が問われていると思います。基礎が面白いと感じる人もいれば、応用が面白いと感じる人もいます。問題の難易度レベルの設定も自分次第です。問題2では、具体的なアプローチ法の考案やマネジメント力が問われていると思います。

研究者はたったこの二つの問題に一生取り組むだけでよいのでシンプルな生き方です。これから研究者・科学者を志す方は、忍耐強く研究に取り組んでいってください。

関連論文・書籍

  1.  L. Pauling, The Nature of the Chemical Bond (Cornell University Press, Ithaca, New York, 1960), 3rd, 13th printing 1995 edn.
  2. Y. Sugimoto, P. Pou, M. Abe, P. Jelíek, R. Pérez, S. Morita and O. Custance, Nature 446(2007)64.
  3. 酒井 邦嘉,「科学者という仕事―独創性はどのように生まれるか 」,中央公論新社,東京,2006.
[amazonjs asin=”4121018435″ locale=”JP” title=”科学者という仕事―独創性はどのように生まれるか (中公新書 (1843))”]

関連リンク

原子一個の電気陰性度の測定に成功! ―化学結合の本質に迫る―

研究者のご略歴

小野田 穣

所属:東京大学大学院新領域創成科学研究科 特任研究員

(5月中旬より所属変更:University of Alberta, Department of Physics, Research Associate)

研究テーマ:原子間力顕微鏡を用いた単原子の元素識別法・電気陰性度測定法の研究、単原子終端探針の研究

Orthogonene

投稿者の記事一覧

有機合成を専門にするシカゴ大学化学科PhD3年生です。
趣味はスポーツ(器械体操・筋トレ・ランニング)と読書です。
ゆくゆくはアメリカで教授になって活躍するため、日々精進中です。

http://donggroup-sites.uchicago.edu/

関連記事

  1. 研究者のためのCG作成術③(設定編)
  2. 【書籍】英文ライティングの基本原則をおさらい:『The Elem…
  3. 反応開発はいくつ検討すればいいのか? / On the Topi…
  4. 採用面接で 「今年の日本化学会では発表をしますか?」と聞けば
  5. SNSコンテスト企画『集まれ、みんなのラボのDIY!』
  6. Akzonobelとはどんな会社? 
  7. 【ジーシー】新卒採用情報(2025卒)
  8. 「大津会議」参加体験レポート

注目情報

ピックアップ記事

  1. 文具に凝るといふことを化学者もしてみむとてするなり⑭: 液タブ XP-PEN Artist 13.3 Proの巻
  2. 種子島沖海底泥火山における表層堆積物中の希ガスを用いた流体の起源深度の推定
  3. デルゴシチニブ(Delgocitinib)のはなし 日本発の非ステロイド系消炎外用薬について
  4. 嗚呼、美しい高分子の世界
  5. 株式会社ナード研究所ってどんな会社?
  6. 高専の化学科ってどんなところ? -その 1-
  7. ウルフ・デッツ反応 Wulff-Dotz Reaction
  8. アフリカの化学ってどうよ?
  9. その化合物、信じて大丈夫ですか? 〜創薬におけるワルいヤツら〜
  10. 抗体を液滴に濃縮し細胞内へ高速輸送:液-液相分離を活用した抗体の新規細胞内輸送法の開発

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年6月
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

最新記事

MDSのはなし 骨髄異形成症候群とそのお薬の開発状況 その1

Tshozoです。今回はかなり限定した疾患とそれに対するお薬の開発の中身をまとめておこうと思いま…

第42回メディシナルケミストリーシンポジウム

テーマAI×創薬 無限能可能性!? ノーベル賞研究が拓く創薬の未来を探る…

山口 潤一郎 Junichiro Yamaguchi

山口潤一郎(やまぐちじゅんいちろう、1979年1月4日–)は日本の有機化学者である。早稲田大学教授 …

ナノグラフェンの高速水素化に成功!メカノケミカル法を用いた芳香環の水素化

第660回のスポットライトリサーチは、名古屋大学大学院理学研究科(有機化学研究室)博士後期課程3年の…

第32回光学活性化合物シンポジウム

第32回光学活性化合物シンポジウムのご案内光学活性化合物の合成および機能創出に関する研究で顕著な…

位置・立体選択的に糖を重水素化するフロー合成法を確立 ― Ru/C触媒カートリッジで150時間以上の連続運転を実証 ―

第 659回のスポットライトリサーチは、岐阜薬科大学大学院 アドバンストケミストリー…

【JAICI Science Dictionary Pro (JSD Pro)】CAS SciFinder®と一緒に活用したいサイエンス辞書サービス

ケムステ読者の皆様には、CAS が提供する科学情報検索ツール CAS SciFind…

有機合成化学協会誌2025年5月号:特集号 有機合成化学の力量を活かした構造有機化学のフロンティア

有機合成化学協会が発行する有機合成化学協会誌、2025年5月号がオンラインで公開されています!…

ジョセップ・コルネラ Josep Cornella

ジョセップ・コルネラ(Josep Cornella、1985年2月2日–)はスペイン出身の有機・無機…

電気化学と数理モデルを活用して、複雑な酵素反応の解析に成功

第658回のスポットライトリサーチは、京都大学大学院 農学研究科(生体機能化学研究室)修士2年の市川…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP