[スポンサーリンク]

化学者のつぶやき

ニンニクの主要成分を人工的につくる

[スポンサーリンク]

ニンニクの主要成分であるアホエンの新規全合成が達成された。酸化条件でオレフィンとスルホキシドを一挙に構築する手法により、簡便かつ短工程なアホエンの大量合成が可能となった。

ニンニクの主要成分アホエン

ユリ科ネギ属の植物であるニンニクは香辛料として食用にすることはもちろんのこと、広く薬用としても用いられてきた。ニンニクは、ビタミンやミネラルの他に硫黄化合物が豊富に含まれており、脳卒中、冠動脈血栓症及びアテローム性動脈硬化症の予防にも効果があるとされている。ニンニクの主要成分であるアホエン(ajoene1)は、1984年に発見されたビニルスルフィド部位をもつアリルスルホキシド化合物である。1の生合成経路は、以下のように説明されている(1A)。ニンニク中のアリイン(alliin2)が酵素アリイナーゼによりアリルスルフェン酸(3)へと変換され、二量化することでアリシン(allicin4)が生成する。反応性の高い4がさらに3と反応することで1を生じる。

 これまで1を人工合成した例はBlockらによる報告[1a,b]のみであり、4をアセトン水溶液中で4時間加熱することで1が得られた(1B)。この方法は短段階であり、最近フッ素をもつ類縁体の合成にも拡張されている[1c]。しかし、多くの副生成物を生じるため1は低収率(34%)にとどまる。また、2012年にアホエン誘導体5の合成法が報告されているが、1自体の合成には適用できていない(1C)[2]

今回、Cardiff大学のWirth教授らは入手容易な化合物から、効率的かつ大量合成可能な1の全合成を達成した(1D)

図1. (A)ajoene(1)の生合成経路、(B)過去の1の合成、(C) ajoene誘導体5の合成、(D)今回の合成

“Short Total Synthesis of Ajoene”

Silva, F.; Khokhar, S. S.; Williams, D. M.; Saunders, R.; Evans, G. J. S.; Graz, M.; Wirth, T. Angew. Chem., Int. Ed.2018, 57, 12290

DOI: 10.1002/anie.201808605

論文著者の紹介

研究者:Thomas Wirth (研究室リンク)

研究者の経歴(一部抜粋):

1984–1990 BSc, University of Bonn
1989–1992 PhD, Technical University of Berlin (Prof. Siegfried Blechert)
1992–1993 Posdoc, Kyoto University (Prof. Kaoru Fuji)
1994-1998 Habilitation, University of Basel
2000–present Professor, Cardiff University

研究内容:セレンの化学、天然物合成、マイクロリアクター化学

論文の概要

著者らは1のアリル部位とスルホキシド部位を合成終盤に一挙に構築する効率的手法を考案した。以下1の合成経路の詳細を述べる(2)

まず、出発原料である臭化物6をチオウレアと反応させ、続く加水分解、生じたチオールのプロパルギル化を経てチオエーテル7を合成した。7に対し、セレノシアン酸2-ニトロフェニルとトリブチルホスフィンを加えることでセレニド9aが得られた。別法として、6に対し、水素化ホウ素ナトリウムとジフェニルジセレニドを作用させることで得られるセレニド8に、上述したプロパルギルチオエーテル化を行うことで置換基の異なる9bを合成した。次に、9へのチオ酢酸のラジカル付加により10とし、続くアセチル基の加水分解と、11によるスルフェニル化により12を得た。最後に12を酸化によりセレノキシドの脱離とスルホキシドの生成が同時に進行すれば1が合成できる。酸化剤として過酸化水素を用いたところ、1が収率20%程度で得られた。反応条件の検討により、10からジイソプロピルアミン(DIPA)存在下m-CPBAを用いると最も収率よく13を与えた(収率48%)。最後にスルフェニル化を行うことでアホエン1の合成を達成した(論文SI参照)。本法を用いて1169gも合成している(純度90%)

さらに合成した1のクオラムセンシング(QS:特定の遺伝子発現を調節する因子)阻害効果を確認したところ、天然から抽出した1と同等な活性を示した(詳細は論文参照)

図2. ajoene(1)の全合成

参考文献

  1. a) Block, E.; Ahmad, S.; Jain, M. K.; Crecely, R. W.; Apitz-Castro, R.; Cruz, M. R. J. Am. Chem. Soc.1984, 106, 8295. DOI:10.1021/ja00338a049b) Block, E.; Ahmad, S.; Catalfamo, J. L.; Jain, M. K.; Apitz-Castro, R. J. Am. Chem. Soc. 1986, 108, 7045. DOI: 10.1021/ja00282a033 c) Block, E.; Bechand, B.; Gundala, S.; Vattekkatte, A.; Wang, K.; Mousa, S.; Godugu, K.; Yalcin, M.; Mousa, S. Molecules 2017, 22, 2081. DOI: 10.3390/molecules22122081
  2. Kaschula, C. H.; Hunter, R.; Stellenboom, N.; Caira, M. R.; Winks, S.; Ogunleye, T.; Richards, P.; Cotton, J.; Zilbeyaz, K.; Wang, Y.; Siyo, V.; Ngarande, E.; Parker, M. P. J. Med. Chem. 2012, 50, 236. DOI: 10.1016/j.ejmech.2012.01.058

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 図に最適なフォントは何か?
  2. 分子の聖杯カリックスアレーンが生命へとつながる
  3. 化学者だって数学するっつーの! :定常状態と変数分離
  4. アスピリンから生まれた循環型ビニルポリマー
  5. 化学の力で複雑なタンパク質メチル化反応を制御する
  6. ベンゼンの直接アルキル化
  7. SPring-8って何?(初級編)
  8. 重医薬品(重水素化医薬品、heavy drug)

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 硫黄の化学状態を高分解能で捉える計測技術を確立-リチウム硫黄電池の反応・劣化メカニズムの解明に期待-
  2. 粒子画像モニタリングシステム EasyViewerをデモしてみた
  3. 「つける」と「はがす」の新技術|分子接合と表面制御 R3
  4. 田辺シリル剤
  5. 学術変革領域研究(A) 「デジタル有機合成」発足とキックオフシンポジウムのお知らせ
  6. トリテルペノイドの「トリ」!?octanorcucurbitacin Bの全合成
  7. タンパク質の定量法―ビューレット法 Protein Quantification – Biuret Test
  8. 私がケムステスタッフになったワケ(4)
  9. ロータリーエバポレーターの回転方向で分子の右巻き、左巻きを制御! ―生命のホモキラリティーの起源に踏み込む―
  10. タングステン酸光触媒 Tungstate Photocatalyst

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年10月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

注目情報

最新記事

無機物のハロゲンと有機物を組み合わせて触媒を創り出すことに成功

第449回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(椴山グループ)5年…

熱化学電池の蘊奥を開く-熱を電気に変える電解液の予測設計に道-

第448回のスポットライトリサーチは、東京工業大学 工学院 機械系 機械コース 村上陽一研究室の長 …

毎年恒例のマニアックなスケジュール帳:元素手帳2023

hodaです。去年もケムステで紹介されていた元素手帳2022ですが、2023年バージョンも発…

二刀流センサーで細胞を光らせろ!― 合成分子でタンパク質の蛍光を制御する化学遺伝学センサーの開発 ―

第447回のスポットライトリサーチは、東京大学大学院 理学系研究科化学専攻 生体分子化学研究室(キャ…

【12月開催】第4回 マツモトファインケミカル技術セミナー有機金属化合物「オルガチックス」の触媒としての利用-ウレタン化触媒としての利用-

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合…

化学ゆるキャラ大集合

企業PRの手段の一つとして、キャラクターを作りホームページやSNSで登場させることがよく行われていま…

最先端バイオエコノミー社会を実現する合成生物学【対面講座】

開講期間2022年12月12日(月)13:00~16:202022年12月13日(火)1…

複雑なモノマー配列を持ったポリエステル系ブロックポリマーをワンステップで合成

第446回のスポットライトリサーチは、北海道大学 大学院工学研究院 応用化学部門 高分子化学研究室(…

河崎 悠也 Yuuya Kawasaki

河崎 悠也 (かわさき ゆうや) は、日本の有機化学者。九州大学先導物質化学研究所 …

研究者1名からでも始められるMIの検討-スモールスタートに取り組む前の3つのステップ-

開催日:2022/12/07  申込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP