[スポンサーリンク]

化学者のつぶやき

ニンニクの主要成分を人工的につくる

[スポンサーリンク]

ニンニクの主要成分であるアホエンの新規全合成が達成された。酸化条件でオレフィンとスルホキシドを一挙に構築する手法により、簡便かつ短工程なアホエンの大量合成が可能となった。

ニンニクの主要成分アホエン

ユリ科ネギ属の植物であるニンニクは香辛料として食用にすることはもちろんのこと、広く薬用としても用いられてきた。ニンニクは、ビタミンやミネラルの他に硫黄化合物が豊富に含まれており、脳卒中、冠動脈血栓症及びアテローム性動脈硬化症の予防にも効果があるとされている。ニンニクの主要成分であるアホエン(ajoene1)は、1984年に発見されたビニルスルフィド部位をもつアリルスルホキシド化合物である。1の生合成経路は、以下のように説明されている(1A)。ニンニク中のアリイン(alliin2)が酵素アリイナーゼによりアリルスルフェン酸(3)へと変換され、二量化することでアリシン(allicin4)が生成する。反応性の高い4がさらに3と反応することで1を生じる。

 これまで1を人工合成した例はBlockらによる報告[1a,b]のみであり、4をアセトン水溶液中で4時間加熱することで1が得られた(1B)。この方法は短段階であり、最近フッ素をもつ類縁体の合成にも拡張されている[1c]。しかし、多くの副生成物を生じるため1は低収率(34%)にとどまる。また、2012年にアホエン誘導体5の合成法が報告されているが、1自体の合成には適用できていない(1C)[2]

今回、Cardiff大学のWirth教授らは入手容易な化合物から、効率的かつ大量合成可能な1の全合成を達成した(1D)

図1. (A)ajoene(1)の生合成経路、(B)過去の1の合成、(C) ajoene誘導体5の合成、(D)今回の合成

“Short Total Synthesis of Ajoene”

Silva, F.; Khokhar, S. S.; Williams, D. M.; Saunders, R.; Evans, G. J. S.; Graz, M.; Wirth, T. Angew. Chem., Int. Ed.2018, 57, 12290

DOI: 10.1002/anie.201808605

論文著者の紹介

研究者:Thomas Wirth (研究室リンク)

研究者の経歴(一部抜粋):

1984–1990 BSc, University of Bonn
1989–1992 PhD, Technical University of Berlin (Prof. Siegfried Blechert)
1992–1993 Posdoc, Kyoto University (Prof. Kaoru Fuji)
1994-1998 Habilitation, University of Basel
2000–present Professor, Cardiff University

研究内容:セレンの化学、天然物合成、マイクロリアクター化学

論文の概要

著者らは1のアリル部位とスルホキシド部位を合成終盤に一挙に構築する効率的手法を考案した。以下1の合成経路の詳細を述べる(2)

まず、出発原料である臭化物6をチオウレアと反応させ、続く加水分解、生じたチオールのプロパルギル化を経てチオエーテル7を合成した。7に対し、セレノシアン酸2-ニトロフェニルとトリブチルホスフィンを加えることでセレニド9aが得られた。別法として、6に対し、水素化ホウ素ナトリウムとジフェニルジセレニドを作用させることで得られるセレニド8に、上述したプロパルギルチオエーテル化を行うことで置換基の異なる9bを合成した。次に、9へのチオ酢酸のラジカル付加により10とし、続くアセチル基の加水分解と、11によるスルフェニル化により12を得た。最後に12を酸化によりセレノキシドの脱離とスルホキシドの生成が同時に進行すれば1が合成できる。酸化剤として過酸化水素を用いたところ、1が収率20%程度で得られた。反応条件の検討により、10からジイソプロピルアミン(DIPA)存在下m-CPBAを用いると最も収率よく13を与えた(収率48%)。最後にスルフェニル化を行うことでアホエン1の合成を達成した(論文SI参照)。本法を用いて1169gも合成している(純度90%)

さらに合成した1のクオラムセンシング(QS:特定の遺伝子発現を調節する因子)阻害効果を確認したところ、天然から抽出した1と同等な活性を示した(詳細は論文参照)

図2. ajoene(1)の全合成

参考文献

  1. a) Block, E.; Ahmad, S.; Jain, M. K.; Crecely, R. W.; Apitz-Castro, R.; Cruz, M. R. J. Am. Chem. Soc.1984, 106, 8295. DOI:10.1021/ja00338a049b) Block, E.; Ahmad, S.; Catalfamo, J. L.; Jain, M. K.; Apitz-Castro, R. J. Am. Chem. Soc. 1986, 108, 7045. DOI: 10.1021/ja00282a033 c) Block, E.; Bechand, B.; Gundala, S.; Vattekkatte, A.; Wang, K.; Mousa, S.; Godugu, K.; Yalcin, M.; Mousa, S. Molecules 2017, 22, 2081. DOI: 10.3390/molecules22122081
  2. Kaschula, C. H.; Hunter, R.; Stellenboom, N.; Caira, M. R.; Winks, S.; Ogunleye, T.; Richards, P.; Cotton, J.; Zilbeyaz, K.; Wang, Y.; Siyo, V.; Ngarande, E.; Parker, M. P. J. Med. Chem. 2012, 50, 236. DOI: 10.1016/j.ejmech.2012.01.058
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 標的指向、多様性指向合成を目指した反応
  2. 文具に凝るといふことを化学者もしてみむとてするなり⑳ドッキングス…
  3. −(マイナス)と協力して+(プラス)を強くする触媒
  4. ベンゼン環が速く・キレイに描けるルーズリーフ
  5. 地球温暖化が食物連鎖に影響 – 生態化学量論の視点か…
  6. 令和4年度(2022年度)リンダウ・ノーベル賞受賞者会議派遣事業…
  7. ビアリールのアリール交換なんてアリエルの!?
  8. 化学エネルギーを使って自律歩行するゲル

注目情報

ピックアップ記事

  1. 根岸試薬(Cp2Zr) Negishi Reagent
  2. 博士課程学生の奨学金情報
  3. 第28回光学活性化合物シンポジウム
  4. 製品開発職を検討する上でおさえたい3つのポイント
  5. 可視光を捕集しながら分子の結合を活性化するハイブリッド型ロジウム触媒
  6. 免疫(第6版): からだを護る不思議なしくみ
  7. 全薬工業とゼファーマ、外用抗真菌薬「ラノコナゾール」配合の水虫治療薬を発売
  8. ネッド・シーマン Nadrian C. Seeman
  9. 池田 富樹 Tomiki Ikeda
  10. 多孔質ガス貯蔵のジレンマを打ち破った MOF –質量でもよし、体積でもよし–

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年10月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

細谷 昌弘 Masahiro HOSOYA

細谷 昌弘(ほそや まさひろ, 19xx年xx月xx日-)は、日本の創薬科学者である。塩野義製薬株式…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP