[スポンサーリンク]

化学者のつぶやき

研究室でDIY!~割れないマニホールドをつくろう~

[スポンサーリンク]

どこでも誰でも使える、ちょっとしたDIYテクニックを共有し、皆でラボを便利に使いましょう・節約しましょうという企画シリーズ記事。題して「研究室でDIY!」

以前にもいくつか取りあげていますが、今回は真空マニホールドをテーマに、「現場ラボのDIY」をご紹介したいと思います(京都大学薬学部の瀧川紘先生からご寄稿頂きました。御礼申し上げます)。

高価なガラス器具、本当に必要ですか?

サンプルの乾燥に油回転式真空ポンプにつないだガラス製真空マニホールドを使っているところは多いと思います。ただ、ガラス製のものは時間が経つとコックが固くなったり、スリのグリースがきれてくると真空漏れを起こしたりします。また、グリースを塗っている最中にコックを落下→破損→スリの部分丸ごと交換(○千円(泣))なんてことも。

そんなときに誰しも思うのは、「これ、なんでガラス製じゃないとだめなの?」ということ・・・。

ガラス製じゃなくてもいいんです!

というわけで、金属製真空マニホールドをDIYしてみました!

金属製マニホールドの完成品

今回作るのはこんな感じの一品です。

①ホースニップル:ここから真空ポンプにつなぎます。
②内・外ソケット:機能的には不要ですが、隣り合うバルブが干渉するのでつけています。
③シールテープ:液体用の配管では基本!気体に効果があるのか定かではありませんが、一応巻いています。

材料と作り方

それでは作り方(というほどのものではないですが)をご紹介します!

用意するモノは下記リスト参照。部品が全て!モノタロウで調達可能です。

アソー ホースニップル HN-1208:1個
アソー 内・外ソケット NF-1022:2個
アソー エースボール ストレート型 ホースニップル一体型 BH-1208:3個
(少し安い『モノタロウ 小型ボールバルブ(ホースニップル一体型)  』でもOK。)
アソー クロス KK-1222:1個
アソー 内・外エルボ LK-1022:2個
シールテープ:適宜

なんてことはないものばかりですが、バルブの種類・サイズは複雑なので品定めが結構面倒なんです・・・。

メリット・デメリット

金属製DIYマニホールドは、ガラス製に比べ、たくさんのメリットがあります。

メリット①:(今のところ)真空漏れがない

「どうせ使っていたら真空漏れ起こすんでしょ・・・」と思っている人は多いと思いますが、弊ラボで1年間使用している限り、全く真空漏れを起こしていません。

メリット②:グリースレス

グリース塗らなくていいんです(当然)。

メリット③:分解できる

「なんかここだけ真空漏れしてそう」「汚れたから洗いたい」そんなときでも分解・交換OK。

メリット④:割れない

(当然)

メリット⑤:増設可能

内ネジチーズ六角ニップルなどと一緒にバルブを買えば、3連だけでなく無限に増やせます。

内ネジチーズ TF-1222

六角ニップル NT-1022

デメリットとしては、結構な重量になることくらいでしょうか。

バルブにガス風船をつければ、(作業に一手間かかりますが)簡易ガス置換マニホールドとしても使えるかも?真空漏れを起こさないと分かれば、アイデアは無限大∞です。

費用も上の3連のものなら5000円(税別、安価な方のバルブを使った場合)ほどで、ガラス製のものよりは安いはずです。ぜひお試し下さい。

おまけ

実施例その2

この工夫を個人的に教えて貰ったところかなり良さそうでしたので、筆者(副代表)のラボでも早速部品を買って一つ作って見ました(下記写真)。いまのところ真空漏れしている様子はなく、普通に使えています。耐圧ゴム管にガラス製3方コックを3つつないで同じラインを作ると、それだけで1万円ぐらいの出費になってしまいます(スリ付ガラスは高価!)。一方のこちらは、一度作っておけば半永久的に使えそうですし、重量と作業手間はあるもののなかなかイケてそうです。是非皆さんのラボでもお試しあれ!

 

追記2019/3/29

岐阜薬科大学・平山祐 先生より金属成分を減らしたマニホールドの作成法をご提供頂きました。詳細はこちらの記事をご参照ください。

追記2019/9/30

神奈川大学・辻勇人 先生より、不活性ガス置換を可能とする改良版の作成法をご提供頂きました。「アソー ホースニップル HN-1208」を「アソー エースボール 【切換用】ホースニップル一体型 BH-5288」に置き換えるだけでOKです。

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ヒドラジン
  2. 自己会合・解離機構に基づく蛍光応答性プローブを用いたエクソソーム…
  3. 拡張Pummerer反応による簡便な直接ビアリール合成法
  4. 研究助成金及び海外留学補助金募集:公益財団法人アステラス病態代謝…
  5. 素粒子と遊ぼう!
  6. 文具に凝るといふことを化学者もしてみむとてするなり ⑦:「はん蔵…
  7. 大気下でもホールと電子の双方を伝導可能な新しい分子性半導体材料
  8. SNS予想で盛り上がれ!2023年ノーベル化学賞は誰の手に?

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 先端事例から深掘りする、マテリアルズ・インフォマティクスと計算科学の融合
  2. CSJカレントレビューシリーズ書評
  3. 触媒的芳香族求核置換反応
  4. 工程フローからみた「どんな会社が?」~タイヤ編 その3
  5. トリルテニウムドデカカルボニル / Triruthenium Dodecacarbonyl
  6. 招福豆ムクナの不思議(6)植物が身を護る化学物資
  7. Comprehensive Organic Transformations: A Guide to Functional Group Preparations
  8. E. J. Corey からの手紙
  9. アルカリ土類金属触媒の最前線
  10. 【ワイリー】日本プロセス化学会シンポジウム特典!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年1月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

ナノ学会 第22回大会 付設展示会ケムステキャンペーン

ナノ学会の第22回大会が東北大学青葉山新キャンパスにて開催されます。協賛団体であるACS(ア…

【酵素模倣】酸素ガスを用いた MOF 内での高スピン鉄(IV)オキソの発生

Long らは酸素分子を酸化剤に用いて酵素を模倣した反応活性種を金属-有機構造体中に発生させ、C-H…

【書評】奇跡の薬 16 の物語 ペニシリンからリアップ、バイアグラ、新型コロナワクチンまで

ペニシリンはたまたま混入したアオカビから発見された──だけではない.薬の…

MEDCHEM NEWS 33-2 号「2022年度医薬化学部会賞」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

マテリアルズ・インフォマティクスにおける分子生成の基礎と応用

開催日:2024/05/22 申込みはこちら■開催概要「分子生成」という技術は様々な問題…

AlphaFold3の登場!!再びブレイクスルーとなりうるのか~実際にβ版を使用してみた~

2021年にタンパク質の立体構造予測ツールであるAlphaFold2 (AF2) が登場し、様々な分…

【5月開催】 【第二期 マツモトファインケミカル技術セミナー開催】 有機金属化合物 オルガチックスによる「密着性向上効果の発現(プライマー)」

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合物を“オルガチッ…

マテリアルズ・インフォマティクスにおける回帰手法の基礎

開催日:2024/05/15 申込みはこちら■開催概要マテリアルズ・インフォマティクスを…

分子は基板表面で「寝返り」をうつ!「一時停止」蒸着法で自発分極の制御自在

第613回のスポットライトリサーチは、千葉大学 石井久夫研究室の大原 正裕(おおはら まさひろ)さん…

GoodNotesに化学構造が書きやすいノートが新登場!その使用感はいかに?

みなさんは現在どのようなもので授業ノートを取っていますでしょうか。私が学生だったときには電子…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP