[スポンサーリンク]

スポットライトリサーチ

「可視光アンテナ配位子」でサマリウム還元剤を触媒化

[スポンサーリンク]

第626回のスポットライトリサーチは、千葉大学国際高等研究基幹・大学院薬学研究院根本研究室)・栗原 崇人 特任助教にお願いしました。

栗原先生は2年前のスポットライトリサーチ(第417回)にもご登場いただいており、今回が2回目のご登場となります。

今回ご紹介するのは、可視光を吸収する配位子を用いたサマリウム触媒の還元反応に関する研究です。可視光を吸収する配位子を開発することにより、量論量使われることが多かったサマリウムの使用量を触媒量に低減できることを報告されました。開発した配位子と触媒量のサマリウムを用いて様々な還元反応が可能であることを明らかにされています。本成果は、J. Am. Chem. Soc. 誌 原著論文およびプレスリリースに公開されています。

Visible-Light-Antenna Ligand-Enabled Samarium-Catalyzed Reductive Transformations

Kuribara, T.; Kaneki, A.; Matsuda, Y.; Nemoto, T. J. Am. Chem. Soc. 2024, 146, 20904–20912. DOI: 10.1021/jacs.4c05414

研究室を主宰されている根本哲宏 教授から、栗原先生について以下のコメントを頂いています。それでは今回もインタビューをお楽しみください!

栗原助教は2023年3月に私の研究室で博士号を取得したのち、特任助教としてスタッフとなった研究者です。学生の時から研究成果を沢山出しておりましたが、教員になってからも、目標地点に最短距離で到達するための道筋やプロセスを的確に逆算する能力を遺憾無く発揮してくれています。今回の研究も私がしたことは、最初に「リンオキシドを使って何か凄いことをやれたらいいんだけど」と言ったくらいです。アイデアとしてヨウ化サマリウムの触媒化を持ってきたので、「それ、すごくいいじゃん」とゴーサインを出し、あとは栗原助教の個人技に任せた結果、高いクオリティーの論文が完成した次第です。栗原助教の統率のもと、一緒に実験をしてくれた金木君(M1)と松田君(D2)の頑張りにも感謝します。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

本研究では、高い還元能力をもつ「可視光アンテナ配位子」を開発することで、1–2 mol%の触媒量のサマリウム(Sm)による還元反応の開発に成功しました。

2価サマリウム、特にヨウ化サマリウム(SmI2)は穏和な一電子還元剤として知られています。一方で、2価サマリウムからは電子を一つしか出すことができないため、一般に反応には化学量論量以上のサマリウム試薬を必要とします。またこれまでにサマリウム還元剤の触媒化を検討した報告はありましたが、反応性の高い0価金属や10–20 mol%の触媒量のサマリウムを必要としていました。

ところで、サマリウムを含む3価のランタノイドは発光材料として注目を集めています。ランタノイドはそれ自体の吸収強度が小さいため、「効率的に光を吸収するアンテナ構造」を組み込んだ配位子が利用されています。光を吸収し励起したアンテナ配位子が、配位先の3価ランタノイドにエネルギー移動することで、ランタノイドからの効率的な発光を実現しています。

そこで今回私たちは、エネルギー移動の代わりに一電子移動を引き起こすアンテナ配位子を開発すれば、3価サマリウムを2価に還元し、触媒量のサマリウムを用いて様々な還元反応を開発できるのではないか?と考えました。実際に、可視光アンテナとして機能する9,10-ジフェニルアントラセン(DPA)を含む二座ホスフィンオキシド配位子を開発することで、1–2 mol%の触媒量のサマリウムと有機還元剤であるアミンを用いて、様々な還元反応の開発に成功しました。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

可視光アンテナ配位子の構造を二座のホスフィンオキシドにしたところです。

可視光アンテナ配位子のデザインとして、還元条件での安定性やサマリウムに対する配位能の高さから、ホスフィンオキシドを選択して合成を行いました。まず単座のホスフィンオキシドDPA-2を用いてピナコールカップリングを検討したところ、反応は進行したものの30%と低収率にとどまりました。そこで、とりあえずホスフィンオキシドの数を増やしてみようと思い、二座のホスフィンオキシドDPA-1を合成したところ、収率が98%と飛躍的に向上しました。1 mol%の触媒量はこれまで経験がありませんでしたので、こんなに少ない量で反応がいくのか、と感動したのを覚えています。

さらに収率向上の要因を明らかにするため、可視光アンテナ配位子の発光強度を測定しました。DPA-1ではSm(OTf)3の添加により発光強度の大幅な低下(すなわちDPA-1がサマリウムに配位)が観測されました。一方で、DPA-2では中程度の低下にとどまり、DPAではほとんど変化しませんでした。したがって収率と配位能との間に良好な関係が見られ、可視光アンテナ配位子の性能の違いが配位能にあることを明らかにできました。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

本研究を始めて2週間くらいで、ピナコールカップリング生成物を定量的に得ることができるようになっていました。しかしそこからが長く、当時研究室に配属されたばかりの共著者の金木くんに再現をお願いしたところ、何度試しても60–90%収率の間を行ったり来たりしていました。これは何か隠された要因があるに違いないと思い、全ての可能性を考慮し詳細に条件を検討したところ、少量の水が収率向上に必要だということが分かりました。ピナコールカップリング反応は水が多くても少なくても影響を受ける反応系で、初期検討では水をケアせずとも都合よく適量の水が混入していたと考えられます。同じ反応でほぼ同じ条件の検討にも関わらず、金木くんと半年にわたって繰り返し実験し、再現性を担保したおかげで今回研究成果として発表することができました。

Q4. 将来は化学とどう関わっていきたいですか?

漠然としていますが、いつも何か面白いことできないかな?と考えて研究しています。今回の研究も、アンテナ配位子がエネルギーの代わりに一電子を移動したら何か新しいことできそう!面白そう!と思い立ち上げた研究です。上手くいかないことの方が多い日々ですが、そうした思いつきやアイデアを大切にして、今後もいろいろなことにチャレンジして化学を楽しんでいきたいと思います。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

論文が出版されてaltmetricをエゴサーチしたときに、私たちの配位子を”beautiful ligand”とつぶやいている方がいて嬉しくなりました。実はそれまであまり気にしていませんでしたが、開発した配位子はdppeのオキシド体に可視光アンテナを導入したもの、と見ることができます。そう考えると自分でも”beautiful ligand”だなと思うようになりました笑。今回は言われて気づいたことですが、自分の研究の中に”beautiful”なポイントを見つけてあげることで、あるいは研究を進める中で”beautiful”な見せ場を作ってあげることで、自信を持って研究していけるといいなと思います。

最後になりますが、一緒に研究を進めていただいた修士1年の金木礼仁くんと博士2年の松田優くん、本研究の遂行にあたり多くの貴重なご助言をいただいた根本哲宏教授に感謝申し上げます。また本研究にスポットライトを当ててくださったChem-Stationのスタッフの皆様に厚く御礼申し上げます。

研究者の略歴

名前:栗原 崇人くりばら たかひと
所属:千葉大学国際高等研究基幹・大学院薬学研究院 特任助教(根本研究室)
略歴:
2014年3月 開成高等学校 卒業
2020年3月 千葉大学薬学部薬学科 卒業(根本哲宏 教授)
2023年3月 千葉大学大学院医学薬学府先端医学薬学専攻 早期修了(博士(薬学)、根本哲宏 教授)
2023年4月より現職

hoda

投稿者の記事一覧

大学院生です。ケモインフォマティクス→触媒

関連記事

  1. Carl Boschの人生 その4
  2. がんをスナイプするフェロセン誘導体
  3. 創薬人育成サマースクール2019(関東地区) ~くすりを創る研究…
  4. 化学者のためのエレクトロニクス講座~無電解めっきの原理編~
  5. 投票!2019年ノーベル化学賞は誰の手に!?
  6. 緑色蛍光タンパク質を真似してRNAを光らせる
  7. 金属から出る光の色を利用し、食中毒の原因菌を迅速かつ同時に識別す…
  8. ポンコツ博士の海外奮闘録XVII~博士,おうちを去る~

注目情報

ピックアップ記事

  1. Xantphos
  2. 中村栄一 Eiichi Nakamura
  3. 有機合成化学協会誌2023年7月号:ジボロン酸無水物触媒・E-E (E = Si, Ge, Sn)結合・擬複合糖質・官能基複合型有機分子触媒・植物概日時計制御分子
  4. 文具に凝るといふことを化学者もしてみむとてするなり⑮:4Kモニターの巻
  5. ハーバード大Whitesides教授がWelch Awardを受賞
  6. 有機合成化学協会誌2018年9月号:キラルバナジウム触媒・ナフタレン多量体・バイオインスパイアード物質変換・エラジタンニン・モルヒナン骨格・ドナー・アクセプター置換シクロプロパン・フッ素化多環式芳香族炭化水素
  7. 第3の生命鎖、糖鎖の意味を解明する!【ケムステ×Hey!Labo 糖化学ノックインインタビュー③】
  8. 力をかけると塩酸が放出される高分子材料
  9. 「サンゴ礁に有害」な日焼け止め禁止法を施行、パラオ
  10. 薬剤師国家試験にチャレンジ!【有機化学編その2】

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年8月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

7th Compound Challengeが開催されます!【エントリー〆切:2026年03月02日】 集え、”腕に覚えあり”の合成化学者!!

メルク株式会社より全世界の合成化学者と競い合うイベント、7th Compound Challenge…

乙卯研究所【急募】 有機合成化学分野(研究テーマは自由)の研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

大森 建 Ken OHMORI

大森 建(おおもり けん, 1969年 02月 12日–)は、日本の有機合成化学者。東京科学大学(I…

西川俊夫 Toshio NISHIKAWA

西川俊夫(にしかわ としお、1962年6月1日-)は、日本の有機化学者である。名古屋大学大学院生命農…

市川聡 Satoshi ICHIKAWA

市川 聡(Satoshi Ichikawa, 1971年9月28日-)は、日本の有機化学者・創薬化学…

非侵襲で使えるpH計で水溶液中のpHを測ってみた!

今回は、知っているようで知らない、なんとなく分かっているようで実は測定が難しい pH計(pHセンサー…

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP