[スポンサーリンク]

化学者のつぶやき

史上最強の塩基が合成される

 Lithium monoxide anion: A ground-state triplet with the strongest base to date.
Tian, Z.; Chan, B.; Sullivan, M. B.; Radom, L.; Kass, S. R.  Proc. Natl. Acad. Sci. USA 2008, 105, 7647. doi:10.1073/pnas.0801393105

史上最強の塩基性をもつ物質が合成された、という報告がPNASに出ていましたので、今回はこれを紹介します。合成に成功したのはミネソタ大学のKassらのグループ。

それはどんなものかというと、意外にも単純な物質で、水酸化リチウム(LiOH)の共役塩基であるリチウムモノオキシドアニオン(LiO-)だそうです。

彼らがLiO-合成に行き着いたアプローチ・指針をまとめてみましょう。

 

「電気陰性な元素が結合するとプロトン酸の酸性度は高くなる」というのはごく基礎レベルの化学的知識です。脱プロトン化によって生じたアニオンが安定であるため、そうなります。(実際、酸性度は HF>H2O>NH3>CH4 の順列になることが知られています。)

これを逆に捉えれば、「電気陽性な元素が結合すると共役塩基の塩基性が高くなる」と考えることができます。ここから、もっとも電気陽性なリチウムを含んだ化学種が良いのでは?という発想が導かれてきます。

 

次のステップは、どういうリチウム化合物が適するのか?ということです。彼らは計算化学の力を借りて、仮想リチウム化学種の塩基性を見積もっています。その結果、メチルアニオン(これまで最強だった塩基性物質)よりも強いものとしてLiO-が示唆されました。

 

いよいよLiO-を合成すれば良いだけになりました。しかしながら、それより強い塩基性物質は勿論この世に無いので、通常とられるプロトン交換反応などでは合成できません。

彼らは、衝突誘起解離(collision-induced dissociation; CID)という現象に着目しました。高い運動エネルギーを持つ気体分子が衝突して、フラグメント解離を引き起こす現象です。質量分析条件下においてよく見られます。ESI-MS条件におけるCIDによって下図のような化学反応を進行させ、LiO-の気相合成に成功しています。

cid

このような合成法をとるために、塩基としての反応性を直接測定することは難しかったようです。電子供与性や熱力学的安定性などから、間接的に証明しているような感じです。当然ながらLiO-を望みの化学反応に用いることも現実的に不可能です。

 

直接私たちの生活には役立ちませんが、化学の限界へ挑む挑戦的な研究の一つといえます。いろいろな分野で想像を超える発見がなされることは、いち化学者として大変楽しみなことです。

 

ちなみに、単独分子での史上最強の酸は2004年にReedらによって合成されたカルボラン酸と言われています。

 

外部リンク

 

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. リガンド指向性化学を用いたGABAA受容体の新規創薬探索法の開発…
  2. アイディア創出のインセンティブ~KAKENデータベースの利用法
  3. 第37回反応と合成の進歩シンポジウムに参加してきました。
  4. 有機合成化学協会誌2017年6月号 :創薬・糖鎖合成・有機触媒・…
  5. 科学部をもっと増やそうよ
  6. ビジネスが科学を待っている ー「バイオ」と「脱炭素」ー
  7. 「一家に1枚」ポスターの企画募集
  8. 日本化学会と対談してきました

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ワインのコルク臭の原因は?
  2. 野依不斉水素化反応 Noyori Asymmetric Hydrogenation
  3. 野依さん講演を高速無線LAN中継、神鋼が実験
  4. 光エネルギーによって二酸化炭素を変換する光触媒の開発
  5. 安価な金属触媒でアルケンの高活性ヒドロシリル化を達成
  6. 多核テルビウムクラスターにおけるエネルギー移動機構の解明
  7. ウーリンス試薬 Woollins’ Reagent
  8. 若手研究者に朗報!? Reaxys Prizeに応募しよう
  9. 芳香族化合物のニトロ化 Nitration of Aromatic Compounds
  10. わずか6工程でストリキニーネを全合成!!

関連商品

注目情報

注目情報

最新記事

ラジカルと有機金属の反応を駆使した第3級アルキル鈴木―宮浦型カップリング

第154回のスポットライトリサーチは、中村 公昭(なかむら きみあき)博士にお願いしました。中村さん…

有機合成化学協会誌2018年8月号:触媒的不斉全合成・分子ローター型蛍光核酸・インドロキナゾリンアルカロイド・非対称化・アズレン・ヒドラゾン-パラジウム触媒

有機合成化学協会が発行する有機合成化学協会誌、2018年8月号がオンライン公開されました。今…

Noah Z. Burns ノア・バーンズ

ノア・バーンズ(Noah Z. Burns、19xx年x月xx日-)は、米国の有機合成化学者である。…

結晶データの登録・検索サービス(Access Structures&Deposit Structures)が公開

ケンブリッジ結晶学データセンターとFIZ Karlsruhe は,無償で利用できる結晶データの登録・…

可視光で芳香環を立体選択的に壊す

キラルルイス酸光触媒を用いた不斉脱芳香族的付加環化反応が開発された。ヘテロ芳香環の芳香族性を壊しなが…

科学とは「世界中で共有できるワクワクの源」! 2018年度ロレアル-ユネスコ女性科学者 日本奨励賞

2018年7月18日、フランス大使公邸にて2018年度ロレアル-ユネスコ女性科学者 日本奨励賞の授賞…

PAGE TOP