[スポンサーリンク]

化学者のつぶやき

史上最強の塩基が合成される

[スポンサーリンク]

 Lithium monoxide anion: A ground-state triplet with the strongest base to date.
Tian, Z.; Chan, B.; Sullivan, M. B.; Radom, L.; Kass, S. R.  Proc. Natl. Acad. Sci. USA 2008, 105, 7647. doi:10.1073/pnas.0801393105

史上最強の塩基性をもつ物質が合成された、という報告がPNASに出ていましたので、今回はこれを紹介します。合成に成功したのはミネソタ大学のKassらのグループ。

それはどんなものかというと、意外にも単純な物質で、水酸化リチウム(LiOH)の共役塩基であるリチウムモノオキシドアニオン(LiO-)だそうです。

彼らがLiO-合成に行き着いたアプローチ・指針をまとめてみましょう。

 

「電気陰性な元素が結合するとプロトン酸の酸性度は高くなる」というのはごく基礎レベルの化学的知識です。脱プロトン化によって生じたアニオンが安定であるため、そうなります。(実際、酸性度は HF>H2O>NH3>CH4 の順列になることが知られています。)

これを逆に捉えれば、「電気陽性な元素が結合すると共役塩基の塩基性が高くなる」と考えることができます。ここから、もっとも電気陽性なリチウムを含んだ化学種が良いのでは?という発想が導かれてきます。

 

次のステップは、どういうリチウム化合物が適するのか?ということです。彼らは計算化学の力を借りて、仮想リチウム化学種の塩基性を見積もっています。その結果、メチルアニオン(これまで最強だった塩基性物質)よりも強いものとしてLiO-が示唆されました。

 

いよいよLiO-を合成すれば良いだけになりました。しかしながら、それより強い塩基性物質は勿論この世に無いので、通常とられるプロトン交換反応などでは合成できません。

彼らは、衝突誘起解離(collision-induced dissociation; CID)という現象に着目しました。高い運動エネルギーを持つ気体分子が衝突して、フラグメント解離を引き起こす現象です。質量分析条件下においてよく見られます。ESI-MS条件におけるCIDによって下図のような化学反応を進行させ、LiO-の気相合成に成功しています。

cid

このような合成法をとるために、塩基としての反応性を直接測定することは難しかったようです。電子供与性や熱力学的安定性などから、間接的に証明しているような感じです。当然ながらLiO-を望みの化学反応に用いることも現実的に不可能です。

 

直接私たちの生活には役立ちませんが、化学の限界へ挑む挑戦的な研究の一つといえます。いろいろな分野で想像を超える発見がなされることは、いち化学者として大変楽しみなことです。

 

ちなみに、単独分子での史上最強の酸は2004年にReedらによって合成されたカルボラン酸と言われています。

 

外部リンク

 

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. AI勉強会+若手セミナー@高知大学
  2. 初めてTOEICを受験してみた~学部生の挑戦記録~
  3. 導電性ゲル Conducting Gels: 流れない流体に電気…
  4. 複数のねじれを持つ芳香族ベルトの不斉合成と構造解析に成功
  5. 化学者に役立つWord辞書
  6. Ming Yang教授の講演を聴講してみた
  7. 超高温の熱分析で窒素ドープカーボンの高感度定性・定量分析を達成
  8. アノードカップリングにより完遂したテバインの不斉全合成

注目情報

ピックアップ記事

  1. 紹介会社を使った就活
  2. 田辺シリル剤
  3. クリス・クミンス Christopher C. Cummins
  4. 有賀先生に質問しよう!!【第29回ケムステVシンポ特別企画】
  5. フタロシアニン phthalocyanine
  6. フォルハルト・エルドマン環化 Volhard-Erdmann Cyclization
  7. 向山縮合試薬 Mukaiyama Condensation Reagent
  8. ジェフ・ボーディ Jeffrey W. Bode
  9. ボロールで水素を活性化
  10. 化学企業のグローバル・トップ50が発表

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2008年6月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP