[スポンサーリンク]

化学者のつぶやき

史上最強の塩基が合成される

[スポンサーリンク]

 Lithium monoxide anion: A ground-state triplet with the strongest base to date.
Tian, Z.; Chan, B.; Sullivan, M. B.; Radom, L.; Kass, S. R.  Proc. Natl. Acad. Sci. USA 2008, 105, 7647. doi:10.1073/pnas.0801393105

史上最強の塩基性をもつ物質が合成された、という報告がPNASに出ていましたので、今回はこれを紹介します。合成に成功したのはミネソタ大学のKassらのグループ。

それはどんなものかというと、意外にも単純な物質で、水酸化リチウム(LiOH)の共役塩基であるリチウムモノオキシドアニオン(LiO-)だそうです。

彼らがLiO-合成に行き着いたアプローチ・指針をまとめてみましょう。

 

「電気陰性な元素が結合するとプロトン酸の酸性度は高くなる」というのはごく基礎レベルの化学的知識です。脱プロトン化によって生じたアニオンが安定であるため、そうなります。(実際、酸性度は HF>H2O>NH3>CH4 の順列になることが知られています。)

これを逆に捉えれば、「電気陽性な元素が結合すると共役塩基の塩基性が高くなる」と考えることができます。ここから、もっとも電気陽性なリチウムを含んだ化学種が良いのでは?という発想が導かれてきます。

 

次のステップは、どういうリチウム化合物が適するのか?ということです。彼らは計算化学の力を借りて、仮想リチウム化学種の塩基性を見積もっています。その結果、メチルアニオン(これまで最強だった塩基性物質)よりも強いものとしてLiO-が示唆されました。

 

いよいよLiO-を合成すれば良いだけになりました。しかしながら、それより強い塩基性物質は勿論この世に無いので、通常とられるプロトン交換反応などでは合成できません。

彼らは、衝突誘起解離(collision-induced dissociation; CID)という現象に着目しました。高い運動エネルギーを持つ気体分子が衝突して、フラグメント解離を引き起こす現象です。質量分析条件下においてよく見られます。ESI-MS条件におけるCIDによって下図のような化学反応を進行させ、LiO-の気相合成に成功しています。

cid

このような合成法をとるために、塩基としての反応性を直接測定することは難しかったようです。電子供与性や熱力学的安定性などから、間接的に証明しているような感じです。当然ながらLiO-を望みの化学反応に用いることも現実的に不可能です。

 

直接私たちの生活には役立ちませんが、化学の限界へ挑む挑戦的な研究の一つといえます。いろいろな分野で想像を超える発見がなされることは、いち化学者として大変楽しみなことです。

 

ちなみに、単独分子での史上最強の酸は2004年にReedらによって合成されたカルボラン酸と言われています。

 

外部リンク

 

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. アルコールを空気で酸化する!
  2. 自己組織化ホスト内包接による水中での最小ヌクレオチド二重鎖の形成…
  3. 高専シンポジウム in KOBE に参加しました –その 1: …
  4. 分子形状初期化法「T・レックス」の実現~いつでもどこでも誰でも狙…
  5. 常温常圧でのアンモニア合成の実現
  6. 重いキノン
  7. 2017年始めに100年前を振り返ってみた
  8. 化学オリンピックを通して考える日本の理科教育

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 有機化学者のラブコメ&ミステリー!?:「ラブ・ケミストリー」
  2. 呉羽化学に課徴金2億6000万円・価格カルテルで公取委
  3. 化学合成で「クモの糸」を作り出す
  4. ローゼンムント・フォンブラウン反応 Rosenmund-von Braun Reaction
  5. 有機EL organic electroluminescence
  6. Ugi反応を利用できるアルデヒドアルデヒド・イソニトリル・カルボン酸・アミン
  7. 化学の力で複雑なタンパク質メチル化反応を制御する
  8. ダグ・ステファン Douglas W. Stephan
  9. ガブリエルアミン合成 Gabriel Amine Synthesis
  10. 太陽電池を1から作ろう:色素増感太陽電池 実験キット

関連商品

注目情報

注目情報

最新記事

ジャーナル編集ポリシーデータベース「Transpose」

およそ3000誌のジャーナル編集ポリシーをまとめたデータベース「Transpose」が、この6月に公…

有機合成化学協会誌2019年9月号:炭素–水素結合ケイ素化・脱フッ素ホウ素化・Chemically engineered extracts・クロロアルケン・ニトレン

有機合成化学協会が発行する有機合成化学協会誌、2019年9月号がオンライン公開されました。ま…

塗る、刷る、printable!進化するナノインクと先端デバイス技術~無機材料と印刷技術で変わる工業プロセス~

お申込み・詳細はこちら開催日時2019年10月18日(金) 10:30~16:50受講料…

5歳児の唾液でイグ・ノーベル化学賞=日本人、13年連続

人を笑わせ、考えさせる独創的な研究を表彰する「イグ・ノーベル賞」の授賞式が米東部マサチューセッツ州の…

アジサイの青色色素錯体をガク片の中に直接検出!

第219回のスポットライトリサーチは、名古屋大学 大学院情報科学研究科(吉田研究室)・伊藤 誉明さん…

高純度フッ化水素酸のあれこれまとめ その2

Tshozoです。前回のつづき。これまではフッ化水素の背景と合成について主に述べましたが、後半は用途…

Chem-Station Twitter

PAGE TOP