[スポンサーリンク]

化学者のつぶやき

sp2-カルボカチオンを用いた炭化水素アリール化

[スポンサーリンク]

ルイス構造からフロンティア軌道が見える頃、ブルースは加速していく

軌道のはなし

2sと2p軌道は空間的なサイズが類似しているため、容易に軌道どうしを重ね合わせることができ、様々な混成軌道を形成します。軌道エネルギーの点からみてみると、全ての混成軌道は2p軌道よりもエネルギー準位が低く、sp3、sp2、spの順に下がることがわかります。混成軌道を形成する際に利用する2s軌道と2p軌道の比から、それぞれの混成軌道のs性は、sp3 = 25%、sp2 = 33%、sp = 50%、とラフに見積もることができるので、ざっくり言うと、s性の高い軌道はエネルギー準位が低い傾向にあると言えるでしょう(下図)。


分子は、よりエネルギー準位が低い軌道に電子を入れて安定化するので、逆に、エネルギー準位が低い軌道に電子が入っていないと不安定=活性な状態になります。電子を受け取りたくてしょうがないLewis酸になるのです。その酸性度・活性度の高さは、例えば、ジアゾニウム塩を、sp2炭素カチオンによる窒素固定の結果だとみると、なんとなく想像できそうですね。なので、これまでに報告されている室温下で安定な炭素カチオン種(カルボカチオン)において、そのほとんどが2p軌道を空軌道としているのも納得できます。[1]

では、sp2軌道を空軌道とするカルボカチオン種は存在可能なのでしょうか?
2010年にReed、Baldridge、Siegelらによって、シリルカチオンを用いたフッ化ベンゼンからのフッ素引き抜きによるフェニルカチオン類縁体の合成が報告されています。[2]


ただ、分子構造をみて解るとおり(図は原著論文より参照)、対アニオンとの相互作用によって配位フリーではないので、厳密にはsp2-カルボカチオンと言えない気がします(*Phカチオンとしての反応性は論文中にて検証済)。
今回は、そんな不安定なやつを中間体として発生させ、さらに触媒反応に活かしてカップリング反応を達成した、という論文がScience誌に報告されていたので紹介したいと思います。

触媒的炭化水素アリール化反応

UCLAのNelsonらは、Me3Si基とF基をオルト位に置換した芳香環1を出発原料とし、ベンゼンや脂肪族炭化水素 2の共存下で触媒量のシリルカチオン種を用いることによってカップリングさせることに成功しています。

“Arylation of hydrocarbons enabled by organosilicon reagents and weakly coordinating anions”

Brian Shao, Alex L. Bagdasarian, Stasik Popov, Hosea M. Nelson, Science 2017, 355, 1403-1407, doi: 10.1126/science.aam7975

提案されている反応機構は以下の通り。

まずにシリルカチオン種によって1を脱フッ素化することでsp2カルボカチオン中間体 Aが発生します。sp2炭素を反応点として、炭化水素のC-H結合が付加することでアレニウムカチオン中間体 Bとなり、そこから脱シリル芳香族化によって、シリルカチオン触媒が再生します。全体的に収率はそれほど高くないのですが、とてもよくデザインされた触媒反応(後述)で感服します。また、メタンまでカップリングパートナーとして利用できるのは、とても興味深いですね。論文中では、種々の検証によりベンザインは経由していないこと、C-H挿入過程は律速段階ではないことなどが示されています。

シリル基のβ効果

さて、論文のイントロのところに、β-silicon stabilizationというフレーズがキーワードとして何度か出てきます。原著論文の反応機構の図にも、二度、記載されていますね。これは、カルボカチオンのβ位に置換したシリル基による安定化効果を意味しています。

効果的に二つの軌道間に結合性相互作用をもたらすには、ざっくりと、三つの条件が必要になります。
条件1 軌道の対称性が一致している(赤↔赤・青↔青)こと。


条件2 二つの軌道間のエネルギー準位が近いこと。


条件3 二つの軌道が十分重なる(相互作用できる)距離に位置していること。

炭素-ケイ素σ結合は、炭素-炭素結合(347 kj/mol)とくらべ結合エネルギーが小さく(301 kj/mol)、すなわち、その軌道エネルギー準位が高いため、空のsp2軌道や2p軌道と相互作用しやすい状態にあります(条件2)。その結果、カルボカチオンのβ位にシリル基が置換していると、分子を安定化することができます(シリル基のβ-effect)。[3]


本論文中のβ-effectを最大限に活かした触媒設計とその成果には美しさを感じるとともに、このようなシンプルな概念の使い方に、著者らの洗練された研究センスが垣間見える気がします。(それにしても、本論文のPI、独立後一発目がScienceとは!)

参考文献

  1. Rajasekhar Reddy Naredla, Douglas A. Klumpp, Chem. Rev. 2013, 113 (9), 6905, DOI: 10.1021/cr4001385
  2. Simon Duttwyler, Christos Douvris, Nathanael L. P. Fackler, Fook S. Tham, Christopher A. Reed, Kim K. Baldridge, Jay S. Siegel, Angew. Chem. Int. Ed. 2010, 49, 7519. doi:10.1002/anie.201003762 
  3. Silicon β-effect (wikipedia)

関連書籍

関連記事

  1. “匂いのゴジラ”の無効化
  2. 超一流化学者の真剣勝負が生み出した丸かぶり論文
  3. 有機合成化学協会誌2020年10月号:ハロゲンダンス・Cpルテニ…
  4. 「ELEMENT GIRLS 元素周期 ~聴いて萌えちゃう化学の…
  5. 温故知新ケミストリー:シクロプロペニルカチオンを活用した有機合成…
  6. 二酸化炭素をはきだして♪
  7. 人工タンパク質ナノブロックにより自己組織化ナノ構造を創る
  8. 結晶世界のウェイトリフティング

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. オキシ水銀化・脱水銀化 Oxymercuration-Demercuration
  2. \脱炭素・サーキュラーエコノミーの実現/  マイクロ波を用いたケミカルリサイクル・バイオマスプラスチックのご紹介
  3. Dihydropyridazinone環構造を有する初の天然物 Actinopyridazinoneを発見 ~微生物の持つヒドラジン生合成経路の多様性を解明~
  4. カルシウムイオン濃度をモニターできるゲル状センサー
  5. 元素のふるさと図鑑
  6. 文化勲章・受章化学者一覧
  7. サラダ油はなぜ燃えにくい? -引火点と発火点-
  8. ベンジルオキシカルボニル保護基 Cbz(Z) Protecting Group
  9. シリルエノールエーテルのβ位を選択的に官能基化する
  10. 化学に関係ある国旗を集めてみた

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年4月
 12
3456789
10111213141516
17181920212223
24252627282930

注目情報

最新記事

5/15(水)Zoom開催 【旭化成 人事担当者が語る!】2026年卒 化学系学生向け就活スタート講座

化学系の就職活動を支援する『化学系学生のための就活』からのご案内です。化学業界・研究職でのキャリ…

フローマイクロリアクターを活用した多置換アルケンの効率的な合成

第610回のスポットライトリサーチは、京都大学大学院理学研究科(依光研究室)に在籍されていた江 迤源…

マリンス有機化学(上)-学び手の視点から-

概要親しみやすい会話形式を用いた現代的な教育スタイルで有機化学の重要概念を学べる標準教科書.…

【大正製薬】キャリア採用情報(正社員)

<求める人物像>・自ら考えて行動できる・高い専門性を身につけている・…

国内初のナノボディ®製剤オゾラリズマブ

ナノゾラ®皮下注30mgシリンジ(一般名:オゾラリズマブ(遺伝子組換え))は、A…

大正製薬ってどんな会社?

大正製薬は病気の予防から治療まで、皆さまの健康に寄り添う事業を展開しています。こ…

一致団結ケトンでアレン合成!1,3-エンインのヒドロアルキル化

ケトンと1,3-エンインのヒドロアルキル化反応が開発された。独自の配位子とパラジウム/ホウ素/アミン…

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP