[スポンサーリンク]

化学者のつぶやき

sp2-カルボカチオンを用いた炭化水素アリール化

ルイス構造からフロンティア軌道が見える頃、ブルースは加速していく

軌道のはなし

2sと2p軌道は空間的なサイズが類似しているため、容易に軌道どうしを重ね合わせることができ、様々な混成軌道を形成します。軌道エネルギーの点からみてみると、全ての混成軌道は2p軌道よりもエネルギー準位が低く、sp3、sp2、spの順に下がることがわかります。混成軌道を形成する際に利用する2s軌道と2p軌道の比から、それぞれの混成軌道のs性は、sp3 = 25%、sp2 = 33%、sp = 50%、とラフに見積もることができるので、ざっくり言うと、s性の高い軌道はエネルギー準位が低い傾向にあると言えるでしょう(下図)。


分子は、よりエネルギー準位が低い軌道に電子を入れて安定化するので、逆に、エネルギー準位が低い軌道に電子が入っていないと不安定=活性な状態になります。電子を受け取りたくてしょうがないLewis酸になるのです。その酸性度・活性度の高さは、例えば、ジアゾニウム塩を、sp2炭素カチオンによる窒素固定の結果だとみると、なんとなく想像できそうですね。なので、これまでに報告されている室温下で安定な炭素カチオン種(カルボカチオン)において、そのほとんどが2p軌道を空軌道としているのも納得できます。[1]

では、sp2軌道を空軌道とするカルボカチオン種は存在可能なのでしょうか?
2010年にReed、Baldridge、Siegelらによって、シリルカチオンを用いたフッ化ベンゼンからのフッ素引き抜きによるフェニルカチオン類縁体の合成が報告されています。[2]


ただ、分子構造をみて解るとおり(図は原著論文より参照)、対アニオンとの相互作用によって配位フリーではないので、厳密にはsp2-カルボカチオンと言えない気がします(*Phカチオンとしての反応性は論文中にて検証済)。
今回は、そんな不安定なやつを中間体として発生させ、さらに触媒反応に活かしてカップリング反応を達成した、という論文がScience誌に報告されていたので紹介したいと思います。

触媒的炭化水素アリール化反応

UCLAのNelsonらは、Me3Si基とF基をオルト位に置換した芳香環1を出発原料とし、ベンゼンや脂肪族炭化水素 2の共存下で触媒量のシリルカチオン種を用いることによってカップリングさせることに成功しています。

“Arylation of hydrocarbons enabled by organosilicon reagents and weakly coordinating anions”

Brian Shao, Alex L. Bagdasarian, Stasik Popov, Hosea M. Nelson, Science 2017, 355, 1403-1407, doi: 10.1126/science.aam7975

提案されている反応機構は以下の通り。

まずにシリルカチオン種によって1を脱フッ素化することでsp2カルボカチオン中間体 Aが発生します。sp2炭素を反応点として、炭化水素のC-H結合が付加することでアレニウムカチオン中間体 Bとなり、そこから脱シリル芳香族化によって、シリルカチオン触媒が再生します。全体的に収率はそれほど高くないのですが、とてもよくデザインされた触媒反応(後述)で感服します。また、メタンまでカップリングパートナーとして利用できるのは、とても興味深いですね。論文中では、種々の検証によりベンザインは経由していないこと、C-H挿入過程は律速段階ではないことなどが示されています。

シリル基のβ効果

さて、論文のイントロのところに、β-silicon stabilizationというフレーズがキーワードとして何度か出てきます。原著論文の反応機構の図にも、二度、記載されていますね。これは、カルボカチオンのβ位に置換したシリル基による安定化効果を意味しています。

効果的に二つの軌道間に結合性相互作用をもたらすには、ざっくりと、三つの条件が必要になります。
条件1 軌道の対称性が一致している(赤↔赤・青↔青)こと。


条件2 二つの軌道間のエネルギー準位が近いこと。


条件3 二つの軌道が十分重なる(相互作用できる)距離に位置していること。

炭素-ケイ素σ結合は、炭素-炭素結合(347 kj/mol)とくらべ結合エネルギーが小さく(301 kj/mol)、すなわち、その軌道エネルギー準位が高いため、空のsp2軌道や2p軌道と相互作用しやすい状態にあります(条件2)。その結果、カルボカチオンのβ位にシリル基が置換していると、分子を安定化することができます(シリル基のβ-effect)。[3]


本論文中のβ-effectを最大限に活かした触媒設計とその成果には美しさを感じるとともに、このようなシンプルな概念の使い方に、著者らの洗練された研究センスが垣間見える気がします。(それにしても、本論文のPI、独立後一発目がScienceとは!)

参考文献

  1. Rajasekhar Reddy Naredla, Douglas A. Klumpp, Chem. Rev. 2013, 113 (9), 6905, DOI: 10.1021/cr4001385
  2. Simon Duttwyler, Christos Douvris, Nathanael L. P. Fackler, Fook S. Tham, Christopher A. Reed, Kim K. Baldridge, Jay S. Siegel, Angew. Chem. Int. Ed. 2010, 49, 7519. doi:10.1002/anie.201003762 
  3. Silicon β-effect (wikipedia)

関連書籍

The following two tabs change content below.

関連記事

  1. 汝ペーハーと読むなかれ
  2. Dead Endを回避せよ!「全合成・極限からの一手」⑦
  3. 素粒子と遊ぼう!
  4. ChemTile GameとSpectral Game
  5. C-H酸化反応の開発
  6. 中学入試における化学を調べてみた 2013
  7. 【書籍】パラグラフ・ライティングを基礎から訓練!『論理が伝わる …
  8. SciFinder Future Leaders in Chem…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 有機合成化学協会誌10月号:不飽和脂肪酸代謝産物・フタロシアニン・トリアジン・アルカロイド・有機結晶
  2. 企業研究者たちの感動の瞬間: モノづくりに賭ける夢と情熱
  3. 根岸 英一 Eiichi Negishi
  4. イレッサ /iressa (gefitinib)
  5. エッフェル塔
  6. マイケル・レヴィット Michael Levitt
  7. ストーク エナミン Stork Enamine
  8. 富士通、化合物分子設計統合支援ソフト「キャッシュ」新バージョンを販売
  9. 落葉の化学~「コロ助の科学質問箱」に捧ぐ
  10. ルイス酸添加で可視光レドックス触媒の機構をスイッチする

関連商品

注目情報

注目情報

最新記事

ジェレマイア・ジョンソン Jeremiah A. Johnson

ジェレマイア・A・ジョンソン(Jeremiah A. Johnson、19xx年xx月xx日)は、ア…

電子ノートか紙のノートか

読者の方々の所属する研究室・会社では実験ノートはどのように保管、データ化されていますでしょうか?…

フランシス・アーノルド Frances H. Arnold

フランシス・ハミルトン・アーノルド(Frances Hamilton Arnold、1956年7月2…

アルキルラジカルをトリフルオロメチル化する銅錯体

中国科学院 上海有機化学研究所のChaozhong Liらは、アルキルハライドから系中生成させた炭素…

Baird芳香族性、初のエネルギー論

第126回のスポットライトリサーチは、東京大学大学院工学系研究科(相田卓三教授) 博士後期課程1年の…

N末端選択的タンパク質修飾反応 N-Terminus Selective Protein Modification

N末端はタンパク鎖の中で1箇所しか存在しないため、これを標的とする修飾反応は必然的に高い位置・化学選…

Chem-Station Twitter

PAGE TOP