[スポンサーリンク]

化学者のつぶやき

白リンを超分子ケージに閉じ込めて安定化!

[スポンサーリンク]

white_phosphorus_3.gif

White Phosphorus Is Air-Stable Within a Self-Assembled Tetrahedral Capsule
Mal, P.; Breiner, B.; Rissanen, K.; Nitschke, J. R. Science 2009, 324, 1697. DOI: 10.1126/science.1175313

英ケンブリッジ大学・Jonathan Nitschkeらによる報告です。

自己組織化によって合成される超分子ケージ(カプセル)化合物は、現在世界中で活発に研究されています。 ケージ内部は、その外部とは異なる環境にあるのが通例で、例えば極めて反応性の高い不安定化学種でも、ケージ内部では安定に存在しうることなどが、多数示されています。

今回紹介するScience誌の報告は、超分子ケージ内に高反応性物質・白リンを閉じ込め安定化させた、という内容です。

白リン(white phosphorus)は、P4の化学式をもつ正四面体状分子です(冒頭図)。

酸素との反応性が極めて高く、60度で自然発火することが知られています。それゆえ、通常は水中で保存します。その危険度は、下の動画を見れば一目瞭然ですね。

 

 

こういう高い反応性を持つがゆえ、白リン弾は軍事兵器としても使われています。”white phosphorus”で画像検索をすれば、被害にあった人達の無残な写真が沢山出てきて、効果のほどはすぐに理解できるのですが・・・どれも結構なグロ画像なので、閲覧はあまりお勧めしません。

 

話がだいぶ逸れてしまいましたが、本論に戻りましょう。

今回の研究でNitschkeらは、独自に開発した超分子ケージを用いています。
以下に示す成分を混ぜて水中で加熱すれば、正四面体状の鉄錯体超分子ケージが組み上がります。ケージ内部は疎水的環境にあることが示されています[1]。

 

white_phosphorus_1.gif

 

このケージと白リン(=疎水性物質)を共存させれば、白リンがケージ内に取り込まれた化合物が高収率で得られてきます。

 

white_phosphorus_2.gif

一旦ケージに取り込まれた白リンは、大気中に4ヶ月放置しても変化がなかったそうです。ケージには大きな開口部があり、酸素と接触することは十分可能なようです。にも関わらずこれほどまでに安定化されるというのは興味深い事実といえます。論文では、酸化における合理的遷移状態がケージの大きさを超えてしまうために反応しないのでは、と考察されていました。

この分子にベンゼン(orシクロヘキサン)を加えると、白リンが有機層に抽出されてきます。一旦抽出されると容易に酸化されることは、NMR実験からも確認されています。しかしn-ヘプタンのような大きな溶媒分子を用いても、白リンは抽出されません。ケージ内でのゲスト交換(溶媒浸入)過程が上手く進むことも重要なようです。

科学的に面白い事実であるのは勿論ですが、「高反応性の危険な試薬を安全に運搬・使用可能にする」「毒劇物を吸着させて簡便に処理する」ためのジェネラルコンセプトとして捉えれば、応用観点からも意義深い研究成果と言えそうです。

この成果がそのままに実用化されるかどうかはともかく、こういった知見の蓄積が、巡り巡って便利な生活につながってくるわけですね。化学の限りない可能性を見た思いがします。

  • 関連論文
[1] Mal, P.; Schultz, D.; Beyeh, K.; Rissanen, K.; Nitschke, J. R. Angew. Chem. Int. Ed. 2008, 47, 8297. doi: 10.1002/anie.200803066

 

  • 関連リンク

リン – Wikipedia

White Phosphorus Tamed (Chemistry World)

Nitschke Group

White Phosphorous Can Be Safely Handled And Transported With New Technique (Science Daily)

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 直接クプラート化によるフルオロアルキル銅錯体の形成と応用
  2. 単一細胞レベルで集団を解析
  3. ChemDrawの使い方【作図編①:反応スキーム】
  4. 太陽電池を1から作ろう:色素増感太陽電池 実験キット
  5. ワムシが出す物質でスタンする住血吸虫のはなし
  6. C–C, C–F, C–Nを切ってC–N, C–Fを繋げるβ-フ…
  7. 論説フォーラム「グローバル社会をリードする化学者になろう!!」
  8. -ハロゲン化アルキル合成に光あれ-光酸化還元/コバルト協働触媒系…

注目情報

ピックアップ記事

  1. 100年前のノーベル化学賞ーフリッツ・ハーバーー
  2. 酵母還元 Reduction with Yeast
  3. エコエネルギー 家庭で競争
  4. ククルビットウリルのロタキサン形成でClick反応を加速する
  5. マリウス・クロア G. Marius Clore
  6. 化学系学生のための企業合同説明会
  7. 生涯最高の失敗
  8. トンボ手本にUV対策 産総研など 分泌物の主成分を解明
  9. 徹底比較 特許と論文の違い ~その他編~
  10. 原田 明 Akira Harada

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年8月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

7th Compound Challengeが開催されます!【エントリー〆切:2026年03月02日】 集え、”腕に覚えあり”の合成化学者!!

メルク株式会社より全世界の合成化学者と競い合うイベント、7th Compound Challenge…

乙卯研究所【急募】 有機合成化学分野(研究テーマは自由)の研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

大森 建 Ken OHMORI

大森 建(おおもり けん, 1969年 02月 12日–)は、日本の有機合成化学者。東京科学大学(I…

西川俊夫 Toshio NISHIKAWA

西川俊夫(にしかわ としお、1962年6月1日-)は、日本の有機化学者である。名古屋大学大学院生命農…

市川聡 Satoshi ICHIKAWA

市川 聡(Satoshi Ichikawa, 1971年9月28日-)は、日本の有機化学者・創薬化学…

非侵襲で使えるpH計で水溶液中のpHを測ってみた!

今回は、知っているようで知らない、なんとなく分かっているようで実は測定が難しい pH計(pHセンサー…

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP