[スポンサーリンク]

化学者のつぶやき

白リンを超分子ケージに閉じ込めて安定化!

[スポンサーリンク]

white_phosphorus_3.gif

White Phosphorus Is Air-Stable Within a Self-Assembled Tetrahedral Capsule
Mal, P.; Breiner, B.; Rissanen, K.; Nitschke, J. R. Science 2009, 324, 1697. DOI: 10.1126/science.1175313

英ケンブリッジ大学・Jonathan Nitschkeらによる報告です。

自己組織化によって合成される超分子ケージ(カプセル)化合物は、現在世界中で活発に研究されています。 ケージ内部は、その外部とは異なる環境にあるのが通例で、例えば極めて反応性の高い不安定化学種でも、ケージ内部では安定に存在しうることなどが、多数示されています。

今回紹介するScience誌の報告は、超分子ケージ内に高反応性物質・白リンを閉じ込め安定化させた、という内容です。

白リン(white phosphorus)は、P4の化学式をもつ正四面体状分子です(冒頭図)。

酸素との反応性が極めて高く、60度で自然発火することが知られています。それゆえ、通常は水中で保存します。その危険度は、下の動画を見れば一目瞭然ですね。

 

 

こういう高い反応性を持つがゆえ、白リン弾は軍事兵器としても使われています。”white phosphorus”で画像検索をすれば、被害にあった人達の無残な写真が沢山出てきて、効果のほどはすぐに理解できるのですが・・・どれも結構なグロ画像なので、閲覧はあまりお勧めしません。

 

話がだいぶ逸れてしまいましたが、本論に戻りましょう。

今回の研究でNitschkeらは、独自に開発した超分子ケージを用いています。
以下に示す成分を混ぜて水中で加熱すれば、正四面体状の鉄錯体超分子ケージが組み上がります。ケージ内部は疎水的環境にあることが示されています[1]。

 

white_phosphorus_1.gif

 

このケージと白リン(=疎水性物質)を共存させれば、白リンがケージ内に取り込まれた化合物が高収率で得られてきます。

 

white_phosphorus_2.gif

一旦ケージに取り込まれた白リンは、大気中に4ヶ月放置しても変化がなかったそうです。ケージには大きな開口部があり、酸素と接触することは十分可能なようです。にも関わらずこれほどまでに安定化されるというのは興味深い事実といえます。論文では、酸化における合理的遷移状態がケージの大きさを超えてしまうために反応しないのでは、と考察されていました。

この分子にベンゼン(orシクロヘキサン)を加えると、白リンが有機層に抽出されてきます。一旦抽出されると容易に酸化されることは、NMR実験からも確認されています。しかしn-ヘプタンのような大きな溶媒分子を用いても、白リンは抽出されません。ケージ内でのゲスト交換(溶媒浸入)過程が上手く進むことも重要なようです。

科学的に面白い事実であるのは勿論ですが、「高反応性の危険な試薬を安全に運搬・使用可能にする」「毒劇物を吸着させて簡便に処理する」ためのジェネラルコンセプトとして捉えれば、応用観点からも意義深い研究成果と言えそうです。

この成果がそのままに実用化されるかどうかはともかく、こういった知見の蓄積が、巡り巡って便利な生活につながってくるわけですね。化学の限りない可能性を見た思いがします。

  • 関連論文
[1] Mal, P.; Schultz, D.; Beyeh, K.; Rissanen, K.; Nitschke, J. R. Angew. Chem. Int. Ed. 2008, 47, 8297. doi: 10.1002/anie.200803066

 

  • 関連リンク

リン – Wikipedia

White Phosphorus Tamed (Chemistry World)

Nitschke Group

White Phosphorous Can Be Safely Handled And Transported With New Technique (Science Daily)

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 化学にインスパイアされたジュエリー
  2. 一流化学者たちの最初の一歩
  3. 有機アジド(1):歴史と基本的な性質
  4. 環サイズを選択できるジアミノ化
  5. ヤモリの足のはなし ~吸盤ではない~
  6. 湿度によって色が変わる分子性多孔質結晶を発見
  7. 化学を広く伝えるためにー多分野融合の可能性ー
  8. 自己組織化ホスト内包接による水中での最小ヌクレオチド二重鎖の形成…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 有機分子触媒の化学 -モノづくりのパラダイムシフト
  2. フリードリヒ・ヴェーラー Friedrich Wohler
  3. JSRとはどんな会社?-2
  4. ノーベル化学賞を担った若き開拓者達
  5. 金属錯体化学を使って神経伝達物質受容体を選択的に活性化する
  6. ケーニッヒ・クノール グリコシド化反応 Koenigs-Knorr Glycosidation
  7. 橘 熊野 Yuya Tachibana
  8. ジメチル(2-ピリジル)シリル化合物
  9. 創薬化学
  10. ReadCubeを使い倒す(1)~論文閲覧プロセスを全て完結させる~

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年8月
« 7月   9月 »
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

注目情報

最新記事

第五回ケムステVプレミアレクチャー「キラルブレンステッド酸触媒の開発と新展開」

新型コロナ感染者数は大変なことになっていますが、無観客東京オリンピック盛り上がっ…

がん治療用の放射性物質、国内で10年ぶり製造へ…輸入頼みから脱却

政府は、がんの治療や臓器の検査をする医療用の放射性物質の国内製造を近く再開する。およそ10年ぶりとな…

三洋化成の新分野への挑戦

三洋化成と長瀬産業は、AI 技術を応用した人工嗅覚で匂いを識別する「匂いセンサー」について共同で事業…

ケムステSlack、開設二周年!

Chem-Stationが立ち上げた化学系オープンコミュニティ、ケムステSlackを開設して早くも二…

過酸がC–H結合を切ってメチル基を提供する

光増感剤とニッケル触媒を用いたC(sp3)–Hメチル化が開発された。合成終盤でのメチル化に威力を発揮…

化学の祭典!国際化学オリンピック ”53rd IChO 2021 Japan” 開幕!

2021年7月「オリンピック/パラリンピック 東京2020大会」も無観客ではあるものの無事開幕されま…

O-脱メチル化・脱アルキル化剤 基礎編

メトキシ基→ヒドロキシ基への変換、割と苦戦しますよね。保護基と呼ぶには利便性が数歩足…

マイクロ波化学のカーボンニュートラルや循環型社会におけるアプリケーションや事業状況

当社のマイクロ波プラットフォーム技術および工業化知見を活用し、アクリル樹脂の分解に必要なエネルギーを…

NMRデータ処理にもサブスクの波? 新たなNMRデータ処理ソフトウェアが登場

NMRメーカーである日本電子のイギリス法人、JEOL UKが6月、WindowsとmacOSの両方で…

芳香環交換反応を利用したスルフィド合成法の開発: 悪臭問題に解決策

第 326回のスポットライトリサーチは、早稲田大学理工学術院 山口潤一郎研究室 …

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP