[スポンサーリンク]

化学者のつぶやき

MSI.TOKYO「MULTUM-FAB」:TLC感覚でFAB-MS測定を!(1)

[スポンサーリンク]

有機合成反応追跡として最も簡便なのは TLC (Thin layer chromatography)ですね。化合物を知り尽くしている有機化学者にとってTLCでの動きを見れば反応確認は十分かもしれません。ですが、反応追跡を極性の変化のみならず質量分析(Mass spectrometry; MS)でも得られたら便利です。

質量情報は、研究室においてあるGC-MSやLC-MSを使えば得ることができます。ですがクロマトを使っているのでどうしても時間がかかります。できればTLCを展開している間に、クルードサンプルでMS情報を得たい。

このような希望、ありませんか?

そんな希望を叶える装置「MULTUM-FAB」がMSI.TOKYO社から販売されています。MSをご存知の方は「え?FABって大型機器室で一番大きい装置でじゃなかった?」と疑問を感じることでしょう。

このMULTUM-FABはこれまでの装置からは想像がつかないような変遷を遂げたマシンなのです。今回はこのMULTUM-FABについて2回にわけてMSの基礎から紹介させていただきます。

*本記事は名古屋大学ITbMモレキュラーストラクチャーセンターのチーフコーディネーターが執筆したものを、編集し公開しています。

 

MSってどんな装置?

質量分析計は、試料導入部・イオン源・分析部・イオン検出部・データ処理部から構成されております。これらの組み合わせにより装置の特徴が生まれることからMS会社は組み合わせの相性・用途・価格などを考慮して装置を開発しております。

例えばGC-MSに使われている分析部である四重極型(quadrupole; quadまたはQ)、飛行時間型(time of flight; TOF )および磁場型(二重収束型またはsector)を用途に応じて比較してみると下記の表1のようになります。

 

2015-02-24_18-28-48

表1 MSの分析部の比較

 

実際に販売されている装置で比べてみると、「試料を分離してから測定」・「揮発性低分子限定」・「コンパクト」「安価」・「整数質量測定」で組み合わせると、GC-EI-QUAD-MS(いわゆるGC-MS)が該当します(図1)。

 

2015-02-24_18-30-41

図1 GC-MS(出典:JEOL

 

ここの、「コンパクト」・「安価」・「整数質量測定」を「なるべくコンパクト」・「精密質量測定」に置き換えると、GC-EI-TOF-MS(いわゆるGC-TOF)が該当します(図2)。ラボにはギリギリ置ける(?)大きさですが値段はGC-MSの数倍になります。

2015-02-28_00-25-55

図2 GC-TOF(出典:JEOL

 

さらに「精密質量測定」・「EI, FAB, FD, FI等多様なイオン源が搭載可能」に置き換えると、「コンパクト」ではないsector-MS(いわゆる磁場型)のみ該当します(図3)。

 

2015-02-28_00-29-08

図3 磁場型 (出典:JEOL)

MSに搭載されている様々なイオン化法

質量分析を行うためには、サンプルをイオン化させる必要があり、サンプルの種類に応じた様々なイオン化法が開発されております。

昔から今まで汎用されてきた手法としてはGC-MSに搭載されている電子イオン化法(Electron ionization; EI)があります。そして近年使われている手法としては、マトリックス支援レーザー脱離イオン化法(Matrix-assisted laser desorption ionization; MALDI)およびLC-MSに搭載されているエレクトロスプレーイオン化(Electrospray ionization; ESI)などが挙げられます。2002年のノーベル化学賞の技術ですね。

今回紹介したいのは高速原子衝撃(Fast atom bonbardment; FAB)というイオン化法を搭載したMSです。

 

イオン化FABって?

FABは過去の記事(MSの基礎知識)にも記載されているように、EIよりもソフトなイオン化法であるため 分子関連イオン情報が得やすく、MALDIおよびESIと比較して夾雑物に強いため、精製度が低いサンプルでも測定できるという優れたイオン化法です。

しかしながらFABを搭載したマシンは磁場型のみ販売されています。そして磁場型マシンは、年々減少傾向にあるのが現状です。理由は昨今の装置(数百kg)と比較して装置が大きく重く(3トン)場所をとるから、です(図4)。また、精製さえ行えば他のイオン化法でまかなえるサンプルが多く、オービトラップのように誰でも簡単に精密質量が測定できるマシン(過去の記事参照:サーモサイエンティフィック「Exactive Plus」: 誰でも簡単に精密質量を!)に人気があることから磁場型質量分析計はアカデミックおよびダイオキシン分析(公定法には磁場型と四重極型が記載されているが、高感度・高選択性により磁場型が選ばれている)など特殊な用途以外新規購入されにくくなっています。

磁場型FABの構造

図4 磁場型FABの構造

 

このように絶滅の危機に瀕しているFABですが、なくなってしまうのはあまりにも勿体無い話です。有機合成研究において、予想しなかった生成物が得られることは日常茶飯事であり、そんな時に精製せずとも質量情報が得られるFABはありがたい存在です。さらには精製を行ってESIで測定してもイオン化の過程でまわりの溶媒と反応してしまい検出できないとか、夾雑物を除去しきれずMALDIでは何も見えないような時、FABは力強い存在ですね。

絶滅の危機に瀕したFABを救ったMULTUM技術とMSI.TOKYO

 

「でも、大多数の化合物はEI, MALDI, ESIでみえるよね。磁場型MSは大きくて重たいからラボに置けないし、操作間違えるとマシンを壊すって言われているので、自分で測定するのもなんだか怖いし。」

 

このような声に応えるべく、MSI.TOKYO社が開発したのが「FABを搭載した飛行時間型MS」です。その大きさなんと、デスクトップパソコンサイズ!ラボに楽々置けるんです。場所替えだって楽々!理想的な使い方としては、TLC用サンプルの一部をFABでも分析、でしょうか。

と、ここからこの機器の紹介をしたいところですが、長くなりましたので次回に続きます!

 

関連書籍

[amazonjs asin=”4621061631″ locale=”JP” title=”マススペクトロメトリー”][amazonjs asin=”4759814132″ locale=”JP” title=”現代質量分析学―基礎原理から応用研究まで (DOJIN ACADEMIC SERIES)”]
Avatar photo

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. パラジウム錯体の酸化還元反応を利用した分子モーター
  2. 実験ノートの字について
  3. 再転職の成功へ: 30代女性研究者が転職ミスマッチを克服した秘訣…
  4. 全合成研究は創薬化学のトレーニングになり得るか?
  5. シュガーとアルカロイドの全合成研究
  6. 95%以上が水の素材:アクアマテリアル
  7. 【速報】ノーベル化学賞2013は「分子動力学シミュレーション」に…
  8. 「関口存男」 ~語学の神様と言われた男~

注目情報

ピックアップ記事

  1. 「次世代医療を目指した細胞間コミュニケーションのエンジニアリング」ETH Zurich、Martin Fussenegger研より
  2. 「銅触媒を用いた不斉ヒドロアミノ化反応の開発」-MIT Buchwald研より
  3. 文具に凝るといふことを化学者もしてみむとてするなり ⑦:「はん蔵」でラクラク捺印の巻
  4. アーウィン・ローズ Irwin A. Rose
  5. ウィルゲロット反応 Willgerodt Reaction
  6. 化学と株価
  7. 芳香族化合物のスルホン化 Sulfonylation of Aromatic Compound
  8. ポンコツ博士の海外奮闘録XVI ~博士,再現性を高める②~
  9. 塩基の代わりに酸を使うクロスカップリング反応:X線吸収分光が解き明かすルイス酸の役割
  10. アジドインドリンを利用した深海細菌産生インドールアルカロイド骨格のワンポット構築

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年3月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

細谷 昌弘 Masahiro HOSOYA

細谷 昌弘(ほそや まさひろ, 19xx年xx月xx日-)は、日本の創薬科学者である。塩野義製薬株式…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP