[スポンサーリンク]

化学者のつぶやき

TLCと反応の追跡

[スポンサーリンク]

これまでも、ケムステではTLCネタを数々取り上げてきましたが、実務的な内容がやっぱり少ないということで、今回の記事ではTLCでの反応の追跡時に起こるトラブルシューティングに特化して紹介しみてみたいと思います。TLCの打ち方(3点打)など基本的なことに関してはこちらの記事などに詳しいのでそちらを参照してください。

準備

市販のTLCはガラスプレートのものとアルミプレートのものに大別されます。アルミプレートはハサミで切れるし、楽だしそっちを使うという人が筆者の周り(特にヨーロッパでは多い)では多いですが、私はTLCを染色後、焼いたときに裏側もしっかり確認できるガラスプレートを使うことをお勧めします。1.5x5cmのカットで3点打ち、2.0x5cmのカットで5点打てるので、暇なときにこれくらいの大きさにガラスプレートを切っておくと便利です。

基本

勝手の知っている反応の場合は適当な時間にTLCをとって、work upでもいいですが、初めて行うよく知らない反応は5分、15分、30分、60分、2時間、4時間、、、という感じでTLCを取るのが基本です。反応の進行を手っ取り早く見たい場合は、Et2O/pentane系は展開が早いし、すぐに溶媒が飛んでくれるので便利です。

初めて行う反応で、TLCをこまめにとる理由は

  1. 反応の収束時間を見積もるため。(Reportされている反応時間は必ずしも自分の扱っている基質に当てはまるわけではありません。例えば15分でほぼNRだった場合は、温度を上げるなり、触媒をついかするなり素早い対応が可能です。)
  2. 基質に反応点が複数ある場合。(選択的なオゾン酸化や保護基の脱保護などでは、厳密に反応をコントロールしない限り、反応が行き過ぎてしまい収率が低下する場合があります。)
  3. 生成物が不安定な場合。(主生成物が比較的不安定な場合、反応条件でdecompする場合もあります。)

注意

  • UV吸収がある化合物を扱っているかといって、UVだけで反応追跡をするのは危険です。UVを持たないbyproductがカラムで紛れていたり、副生成物として生成しているかもしれません。しっかり染色しましょう。
  • 沸点の低い化合物の場合は、できるだけ沸点の低い系Et2O/pentane系で上げて、目的物質が蒸発するのを防ぎましょう。また、この手の化合物は往々にして、官能基が少なかったりするので焼けにくいことがあります。GC-MSや1H-NMRなどでの反応追跡なども試みましょう。
  • 反応が完了したら染色したTLCの写真を撮って、電子ノートに貼り付けてしまいましょう。

低温反応の追跡

低温反応を行なった場合、サンプルを採取する間にキャピラリーの中で反応が進行し、反応が完了しているように見えていたが、実際にworkupをしてみるとconversionが半分程度だったということもあります。極低温反応の場合は、キャピラリーで採取したサンプルはできるだけ素早くTLCにサンプルを載せるようにし、反応が余分に進行しないようにすることも重要です。また、サスペンジョンの反応の場合もさっさとTLCを打たないと、個体がキャピラリーを詰まらせることがあるので注意が必要です。どちらも、先に小さいスケールでクエンチしてからTLCを取るという方法もあります。

化合物の分解

化合物によっては、TLC上で不安定なものもあります。そういった化合物の場合、2次元TLCが有効です。2次元TLCで生成物が不安定であることが分かれば、精製方法をカラムから蒸留や再結晶、若しくは精製せずに次の反応にそのまま供する方針に変更したりすることが可能です。北原Danishefskyジエンの合成など、壊れやすい(出発物質に戻る)化合物の場合は、TLCではそもそも反応を追跡せず、揮発性物質同様1H NMRやGC-MSで追跡するなどの工夫が必要です。

シリカゲルは一般に中性とされていますが、グリコシル供与体などの合成では1%程度のDIPAやNEt3を一緒に展開すると生成物の分解を防ぐことが可能です。ただしこの場合は、UVでの検出が主となります。染色すると場合によってはうまく行かないことがあるので適切な染色液を用いるなど工夫が必要です。

テーリング

アミンが生成物の場合は、0.5%程度のDIPAやNEt3を展開溶媒に添加するとテーリングを抑えることが可能です。また、NHシリカゲルを塗布してあるTLCを買うもしくは作成し、使うことも可能です。

一方で、カルボン酸などの場合は、0.5%程度のAcOHなどをCHCl3/MeOHなどの系に添加するとテーリングを防ぐことが可能です。また酸性シリカゲルTLCも市販されていますので、利用可能です。

また、これらの極性官能基を有する化合物の場合、特にアミノ酸などの両性化合物や糖などは、逆相カラムを備えたHPLC-MSの方がうまくいく反応の追跡ができる場合もあります。(ただし、カルボン酸やスルホン酸はポジでは見えにくいのでネガで検出する必要があるので注意してください。)

分離

分離が良く無い場合は、溶媒系を変えてみましょう。特に芳香族化合物の分離を試みる場合、非極性溶媒としてPhMeやPhHを用いるとpi-piの影響からか分離が良くなる場合があります。また、UPLCやGC-MSなども分析手段の一つとして考慮しましょう。

先ほどもさらっと述べましたが、ツルツルの(極性官能基のない)化合物の場合、目的物質が低沸点でTLCで確認する前に溶媒と一緒に蒸発してしまったり、染色しようとしても何にも染まらないという場合がよくあります。あらゆる染色液を試すのもいいですが、1H NMRやGC-MSなどで追跡するとうまくいく場合もあるので、他の分析手段があることも忘れずに。尚、1H-NMRで追跡する場合は、その感度ゆえ、比較的たくさんの溶液(例えば重溶媒比20%)を重溶媒で薄めて1H-NMR測定に供します。化合物量がある程度確保でき、高希釈条件でなければ出発物質と目的物質のシグナルは得られるはずです。

アルミナプレートの方が分離が良い場合、化合物が分解しにくい場合もありますので、シリカゲルプレートでうまくいかない場合はアルミナプレートで反応を追跡することも有効です。

シリカゲルプレートでもガラスプレートを用いた場合、裏面の焼け方が表面と違っていたりして、分析に有用な場合もあります(例えば、Rfは同じだが焼け方が違っていて反応が進行したことを確認する場合など)。筆者は専らガラスプレート派ですが、アルミをご利用の皆様、場合によってはハサミで切れて便利なアルミプレートではなく、ガラスプレートで展開してみると良い結果が得られるかも知れません。

定量性

TLCの欠点は定量性に欠けるという点です。例えば、企業のプロセス化学(化合物をいかに効率的に工業的に作るかを研究する分野)の研究者の方々は基本的にTLCは使わないと聞いたことがある方も多いのではないでしょうか?筆者が所属している研究室でもほぼ全ての学生がTLCに加えUPLC-MSを利用していますし、近しい研究室ではSFC-MS (Supercritical Fluid Chromatography, 超臨界流体クロマトグラフィー)などを使っているところもあります(うらやましい)。SFCやUPLCの場合、分析時間はたったの五分で綺麗な結果が得られるので、TLCと遜色ないスループットで仕事が可能です。SFC-MSなんて高すぎで、HPLCしか無いという場合でも、比較的短い逆相カラムと高い有機溶媒比率の組み合わせにすることで、分析時間を抑えて反応を追跡するということが可能です。ただこの場合は、逆相分析になるのでHPLC分取の場合は問題にならないのですが、通常の順相カラムでの溶出順序が異なるので注意が必要です。

関連書籍

[amazonjs asin=”4274216411″ locale=”JP” title=”LC/MS,LC/MS/MSの基礎と応用”]

関連リンク

2020.07.07 更新 (Gakushi)

Gakushi

投稿者の記事一覧

東京の大学で修士を修了後、インターンを挟み、スイスで博士課程の学生として働いていました。現在オーストリアでポスドクをしています。博士号は取れたものの、ハンドルネームは変えられないようなので、今後もGakushiで通します。

関連記事

  1. フルオロシランを用いたカップリング反応~ケイ素材料のリサイクルに…
  2. 化学と工業
  3. MEDCHEM NEWS 33-3 号「30年後の創薬研究」
  4. N-オキシドの性質と創薬における活用
  5. 研究室でDIY! ~明るい棚を作ろう~
  6. 無金属、温和な条件下で多置換ピリジンを構築する
  7. 化学反応を自動サンプリング! EasySampler 1210
  8. 海外で働いている僕の体験談

注目情報

ピックアップ記事

  1. 有機金属反応剤ハンドブック―3Liから83Biまで
  2. 不斉アリル位アルキル化反応を利用した有機合成
  3. とある農薬のはなし「クロロタロニル」について 
  4. ポンコツ博士の海外奮闘録① 〜博士,米国に上陸す〜
  5. ケミカルバイオロジー chemical biology
  6. エリック・ジェイコブセン Eric N. Jacobsen
  7. NHCが触媒する不斉ヒドロフッ素化
  8. 単一細胞レベルで集団を解析
  9. 未来を拓く多彩な色素材料
  10. 理研、119番以降の「新元素」実験開始へ 露と再び対決 ニホニウムに続く「連勝」狙う

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年4月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

ナノグラフェンの高速水素化に成功!メカノケミカル法を用いた芳香環の水素化

第660回のスポットライトリサーチは、名古屋大学大学院理学研究科(有機化学研究室)博士後期課程3年の…

第32回光学活性化合物シンポジウム

第32回光学活性化合物シンポジウムのご案内光学活性化合物の合成および機能創出に関する研究で顕著な…

位置・立体選択的に糖を重水素化するフロー合成法を確立 ― Ru/C触媒カートリッジで150時間以上の連続運転を実証 ―

第 659回のスポットライトリサーチは、岐阜薬科大学大学院 アドバンストケミストリー…

【JAICI Science Dictionary Pro (JSD Pro)】CAS SciFinder®と一緒に活用したいサイエンス辞書サービス

ケムステ読者の皆様には、CAS が提供する科学情報検索ツール CAS SciFind…

有機合成化学協会誌2025年5月号:特集号 有機合成化学の力量を活かした構造有機化学のフロンティア

有機合成化学協会が発行する有機合成化学協会誌、2025年5月号がオンラインで公開されています!…

ジョセップ・コルネラ Josep Cornella

ジョセップ・コルネラ(Josep Cornella、1985年2月2日–)はスペイン出身の有機・無機…

電気化学と数理モデルを活用して、複雑な酵素反応の解析に成功

第658回のスポットライトリサーチは、京都大学大学院 農学研究科(生体機能化学研究室)修士2年の市川…

ティム ニューハウス Timothy R. Newhouse

ティモシー・ニューハウス(Timothy R. Newhouse、19xx年xx月x日–)はアメリカ…

熊谷 直哉 Naoya Kumagai

熊谷 直哉 (くまがいなおや、1978年1月11日–)は日本の有機化学者である。慶應義塾大学教授…

マシンラーニングを用いて光スイッチング分子をデザイン!

第657 回のスポットライトリサーチは、北海道大学 化学反応創成研究拠点 (IC…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP