[スポンサーリンク]

化学者のつぶやき

UV-Visスペクトルの楽しみ方

[スポンサーリンク]

 

 

新しく合成した化合物を論文に投稿する際、NMRやX線による構造解析の他にも、融点やMass、元素分析などのデータもしっかりと測定します。院生時代、筆者が合成した新規化合物のほとんどには色がついていたので、頻繁にUV-Vis測定も行っていました。

このUVスペクトルデータ、いろんな見方ができると思いますが、注目すべき点の一つとして「最長波長吸収帯」があります。長波長側はエネルギーが低い領域で、「最長波長吸収帯」は分子中で遷移エネルギーが小さなHOMO-LUMOギャップと相関があります。
例えば、HOMO-LUMOギャップが小さく成なる程、最長波長吸収帯はより長波長側にあらわれる、といった具合です。

で、ある時ふと気がついたのですが、波ってエネルギーに換算できるので、UVからHOMO-LUMOギャップを見積もることができるんですね。というわけで、簡単に計算できる方法を以下の式から見積もったのです。

rk1.gif

結果はこんな感じ。A nmという最長波長吸収帯を持つ分子のHOMO-LUMOギャップ(kcal/mol or eV)。

rk2.gif

 

例えば、最長波長吸収帯が400 nmに現れる化合物なら、そのHOMO-LUMOギャップはおよそ71 kcal/mol。

UVは溶液中で測定するので、厳密には、その分子の最安定構造におけるHOMO-LUMOギャップでは無いだろうし、遷移状態の構造も最安定構造とは異なります。分子によっては溶媒にかなり影響されるものもありますので、あくまでも目安程度の式ですが。簡単にまとめると以下のとおり。

rk3.gif

理論計算で最適化して見積もったHOMO-LUMOエネルギー差と、ほど良く相関が見られたのを覚えています。どうでしょう、みなさんの化合物の色とHOMO-LUMOギャップに近い値でしょうか??

また最長波長吸収帯は、化合物の色にも影響を与えます(注:最長波長吸収帯だけではなく、吸収帯全体の位置や吸光係数の大きさに依存します)。

 

Unknown
(画像: wikipediaより)

(紫:380-450nm、青:450-495nm、緑:495-570nm、黄色:570-590nm、橙色:590-620、赤:620-750nm)
「波長」には上図のような感じで色があり、化合物がそこに吸収帯を持つということは、それ
 以外の色を示すことになります。
例えば、300nm~辺りに強い吸収帯があると化合物は黄色、もう少し長波長側で400nm~だと赤~橙、600nm~緑、700nm~で濃青、800nm~黒に近い、といった具合でしょうか。

いろんな化合物の吸収帯の位置や組み合わせ、吸光係数の大きさを覚えると、論文や学会等で、新しい化合物の色を見た時に、
「ははぁ~ん、この辺りに吸収帯があってHOMO-LUMOギャップはこのくらいだな」と地味に楽しむことが出来ます。
と言うわけで、色のある新規化合物を論文に投稿する際には、きちんとUVも取りましょう!

他にも化合物の性質を簡単に見積もれる面白い方法を知っていたら、是非教えて下さい。
有益な情報はみんなで共有しましょう。

 

参考文献

 

関連記事

  1. 即戦力のコンパクトFTIR:IRSpirit
  2. −(マイナス)と協力して+(プラス)を強くする触媒
  3. ご長寿化学者の記録を調べてみた
  4. 当量と容器サイズでヒドロアミノアルキル化反応を制御する
  5. 研究者版マイナンバー「ORCID」を取得しよう!
  6. 光照射下に繰り返し運動をおこなう分子集合体
  7. 書物から学ぶ有機化学 2
  8. 2005年ノーベル化学賞『オレフィンメタセシス反応の開発』

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 99.7%の精度で偽造ウイスキーを見抜ける「人工舌」が開発される
  2. 暑いほどエコな太陽熱冷房
  3. 3.11 14:46 ②
  4. 平尾一郎 Ichiro Hirao
  5. 【太陽HD】世界初!セルロースナノファイバー複合電子材料の研究
  6. 光有機触媒で開環メタセシス重合
  7. シクロヘキサンの片面を全てフッ素化する
  8. C-H酸化反応の開発
  9. 水素社会実現に向けた連続フロー合成法を新開発
  10. 脈動がほとんどない小型精密ポンプ:スムーズフローポンプQシリーズ

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

概日リズムを司る天然変性転写因子の阻害剤開発に成功

第283回のスポットライトリサーチは、信州大学大学院総合理工学科農学専攻(大神田研究室)・細谷 侑佑…

アニリン類のC–N結合に不斉炭素を挿入する

アニリン類の炭素–窒素(C–N)結合に”不斉炭素を挿入”してキラルベンジルアミンとする手法が開発され…

フルオロシランを用いたカップリング反応~ケイ素材料のリサイクルに向けて~

第282回のスポットライトリサーチは、大阪府立大学 大学院理学系研究科(松坂研究室)・山本大貴さんに…

第133回―「遺伝暗号リプログラミングと翻訳後修飾の研究」Jason Chin教授

第133回の海外化学者インタビューはジェイソン・チン教授です。ケンブリッジMRC分子生物学研究所のタ…

アメリカ大学院留学:卒業後の進路とインダストリー就活(3)

前回・前々回の記事では、アメリカのPhD取得後の進路について、一般的な進路やインダストリー就活の流れ…

リンだ!リンだ!ホスフィン触媒を用いたメチルアミノ化だ!

有機リン触媒とアリールボロン酸を用いたニトロメタンの還元的C–Nカップリング反応が報告された。本手法…

化学者のためのエレクトロニクス講座~次世代の通信技術編~

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLE…

第132回―「遷移金属触媒における超分子的アプローチ」Joost Reek教授

第132回の海外化学者インタビューはジュースト・リーク教授です。アムステルダム大学ファント・ホッフ分…

Chem-Station Twitter

PAGE TOP